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Abstract: Mapping the distribution and persistence of surface water in a timely fashion has broad 
value for tracking dynamic events like flooding, and for monitoring the effects of climate and human 
activities on natural resource values and biodiversity. Traditionally, surface water is mapped from 
optical imagery using semi-automatic approaches. However, this process is time-consuming and 
the accuracy of results can vary among image interpreters. In recent years, Synthetic Aperture Radar 
(SAR) images have been increasingly used. Microwave signals sensitive to water content make SAR 
systems useful for mapping surface water, saturated soils, and flooded vegetation. In this study, a 
fully automatic method based on robust stepwise thresholding was developed to map and track the 
change in the extent of surface water using Polarimetric SAR data. The application of this method 
in both Radarsat-2 and Sentinel-1 data in central Ontario, Canada demonstrates that the developed 
robust stepwise thresholding approach could facilitate rapid mapping of open water areas with a 
promising accuracy of over 95%. In addition, the time-series extent of surface water extracted from 
May 2008 to August 2016 reveals the dynamic nature of surface inundation, and the trend was 
consistent with the local precipitation data. 
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1. Introduction 

Surface water bodies are the most significant resources on our planet. Human activities, climate, 
and other environmental changes have strong impacts on the locations and sizes of open water 
bodies, which in turn can affect surrounding environments, biodiversity, and human wellbeing [1–
4]. Advanced remote sensing technologies provide an excellent opportunity to obtain spatially 
extensive and temporally repeated data relevant to mapping surface water [5–8]. With optical 
imagery, surface water is usually extracted based on the difference in the spectral reflectance between 
land and water. Water absorbs most of the radiation in near-infrared (NIR) and mid-infrared (MIR), 
whereas other cover types, such as vegetation, soil, and human infrastructure have a higher 
reflectance in these spectral ranges. In addition to the direct use of the surface reflectance in 
multispectral satellite imagery, several indices are commonly employed, including the normalized 
difference water index (NDWI) that uses the visible wavelength (0.52–0.60 micrometers) and NIR 
(0.77–0.90 micrometers) and modified normalized difference water index (MNDWI) that uses the 
visible and Mid-infrared wavelengths (1.55–1.75 micrometers) [9,10]. Despite the values of such 
metrics, the acquisition of passive optical data depends on weather conditions and solar illumination, 
which make it a challenge for them to be used in surface water monitoring. For example, flooding 
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usually happens during the heavy rain, which makes it difficult for the optical sensors to obtain data 
of the earth surface covered by clouds [11]. 

As an active sensor, Synthetic Aperture Radar (SAR) can collect images day or night, and its 
microwaves can penetrate through most clouds, rain fields, water vapor, and aerosol layers. In 
particular, as water has a unique signature in SAR imagery, a calm water body behaves as a specular 
reflector with respect to the radar wavelength and thus appears as a low-intensity area in SAR 
images. This contrasts with the higher intensity of the rougher surrounding terrain, characterized by 
diffuse scattering [12–15]. However, the contrast is dependent on factors such as polarization and 
incidence angle of the emitted microwave radiation. For the current Radarsat-2 sensor with an 
incident angle ranging from 20 degrees to 54 degrees, calm water is considered to be specular 
reflection, and the backscatter is close to zero [16].  

Several studies have been conducted to map surface water with SAR data through the 
thresholding techniques utilizing the low return signal behavior of open water. Specifically, methods 
include manually-defined histogram thresholding [17,18], the Otsu’s algorithm [19], radiometric 
threshold based on a gamma distribution [20,21], and threshold sets based on statistical analysis of 
the trainings [22,23]. Those approaches are not fully automatic, and some of them require additional 
processes to generate high accuracy surface water map, such as supervised classification approaches 
[22,24–26], region growing segmentation [20,23,27,28], and machine learning approaches [29–31]. 
Even with their success, these methods require time and human resources and thus are not 
operational [18,32]. In addition, some methods are incident angle-dependent, as higher incident angle 
data are selected for their high contrast between surface water and land [27,33]. Although higher 
accuracy has been achieved, it is not suitable for long term surface water mapping and emergency 
flood map production as the amount of the data is reduced. A fully automatic and incident angle 
independent process is thus much needed to support the timely production of surface water 
mapping.  

In this study, a fully automated algorithm is developed to characterize effectively water bodies 
using Polarimetric C-band SAR data. Surface water extent was mapped through a robust stepwise 
automatic thresholding (SAT) approach and validated with a manual digitized surface water 
inventory. The SAT method was also compared with other commonly used approaches for surface 
water mapping using NDWI and Otsu’s method [34]. To further explore the potential of mapping 
surface water at a global scale, the algorithm was tested on both Radarsat-2 and Sentinel-1 SAR data.  
The algorithm was applied on a time series of Radarsat-2 data to map surface inundation dynamics.  

2. Materials and Methods  

The study area is located in Ontario, Canada (77°28'21" W, 45°59'10" N)(Figure 1) within the 
Boreal Shield ecoregion, where the climate is generally continental with long cold winters and short 
warm summers [35]. The historical weather data show the monthly precipitation in the site ranges 
between 29 mm and 111 mm with the annual temperatures averaged at approximately 4.5 °C. Figure 
2 shows the specific precipitation data in the area. Also, the area is within the western portion of black 
duck breeding range with the southern area covered by deciduous forest and transitioning to the 
northern boreal forest. The site was selected due to the availability of existing SAR and waterfowl 
data for individual wetlands, as needed to support initiatives of resources managers conducting 
wildlife-habitat assessments. 
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Figure 1. The geographic location of the study area with the SAR scenes. The red box on the map 
indicates the location of the study site and the footprint of the Multi-spectral SPOT imagery. The green 
boxes indicate the frame footprint of Radarsat-2 data. The blue box indicates the frame footprint of 
the Sentinel-1 SAR data. The right panel uses the World topographic map from Esri, with the sources 
from Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, 
GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, 
OpenStreetMap contributors, and the GIS User Community. 

 

Figure 2. Summary of monthly precipitation of the study area for summer in 2008–2016. 

This study utilized a total of 51 scenes of C-band (5.405 GHz) Radarsat-2 Single look complex 
(SLC) images acquired from May 2008 to August 2016. The images all were acquired from Fine Quad 
(FQ) polarized mode, with a resolution of 5.2 m and 7.7 m in slant range and azimuth, respectively. 
Also, images were collected in both descending (acquisition time around 11:30 Coordinated 
Universal Time (UTC)) and ascending (acquisition time around 23:15 UTC) orbits, and from varies 
beam mode, including FQ4, FQ9, FQ14, FQ18, FQ23 and FQ28 to maximize the number of scenes for 
the temporal analysis. (Detailed information about the images is listed in Appendix A.) 

Another C-band imager Sentinel-1A with a swath width of 250-km at fine spatial resolution was 
explored in this study. For algorithm testing, one scene of Dual-polarized (HH/VH) Sentinel-1 SAR 
data under interferometric wide-swath (IW) mode acquired on 9 June 2016, was first processed to 
Level-1 ground range detected (GRD), and then downloaded via python download from National 
Aeronautics and Space Administration Alaska Satellite Facility (NASA/ASF). The spatial resolution 
was 20.3m and 22.6 m in slant range and azimuth, respectively, and the incident angle was between 
32.9–43.1 degrees.  
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A digital elevation model (DEM) was employed to perform the terrain correction on the images, 
as the images were aligned and corrected for elevation interference to ensure that all SAR images 
were overlaid with each other and with the cartographic files. The DEM used for this purpose was 
the South Central Ontario Ortho-photography Project (SCOOP) grid (2 m), generated from the stereo 
imagery collected between April to May 2013. 

To cross-validate the surface water mapped by SAR data, one scene of SPOT-7 imagery acquired 
on 03 May 2016 was also employed. The multispectral satellite imagery has four spectral bands, blue 
(450–520 nm), green (530–590 nm), red (625–695 nm), and near-infrared (760–890), along with a spatial 
resolution of 6.6 m. The imagery has been ortho-rectified to be the same georeferenced as the SAR 
imagery. 

The proposed automatic algorithm consists of three steps: 1) pre-processing of SAR data to 
generate a backscattering coefficient, georeferenced with a provincial 2m LiDAR derived DEM to 
correct the relief displacement, and boxcar de-speckle filtering to remove the noise within the data, 2) 
SAT for generating the water extent map, and 3) post-processing of the image using morphological 
operations to remove an island within a lake and small misclassified areas (Figure 3). The HH 
polarization was used in this study as it provides the highest contrast between calming open water and 
land. 

 

Figure 3. The workflow of the proposed water-mapping procedure. 

The pixel value of the SAR image was determined by the strength of the radar signal reflected 
from a unit area on the corresponding location in the scene, the backscatter coefficient β0 was used in 
calibration to convert the values from the digital number to the reflectivity of the surface objects. 
Parameter β0 was the radar cross-section per surface unit of the target with respect to the local incident 
angle. All SAR data were then converted from raw units to power units (decibels).  

Due to the fact that the speckle effect caused by the coherent radiation used by radar systems 
was present, the de-speckle filter was employed to remove the salt and pepper noise while preserving 
edges and textural structures prior to data analysis. In this study, a boxcar filter with a 5-pixel by 5-
pixel window was adopted, resulting in a unique valley-hill pattern in the histogram that represented 
a better distinction between water and non-water bodies, shown in Figure 4. The strategy of detecting 
the bottom of this valley has been proven to be a good threshold that separates water bodies (low 
backscattering coefficient) and non-water bodies [36]. Also, this pattern exists in all incidence angle 
of Radarsat-2 SAR data, not only the higher ones. Thus, the normalization between incident angles is 
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omitted in this study. All the pre-processing procedures were designed as a workflow done 
automatically with python script utilizing the functions provided by PCI Geomatica. 

  
(a) (b) 

Figure 4. Histograms of HH band. (a) Histogram of original backscattering coefficient in the HH band. 
(b) Histogram of backscattering coefficient in the HH band after boxcar filtering. 

To automatically determine the threshold value located at the valley (shown in Figure 4b), a 
step-wise method was developed. Specifically, a set of third-order polynomials was employed to fit 
the histogram in a manner of moving steps. The reason for this is that the third-order polynomial has 
the shape that best describes the histogram of backscattering coefficient after boxcar de-speckle, and 
easier to solve the turning points compared with the higher order polynomials. Also, as the image 
histogram was rough with notches throughout the curve, using local minimum detection would 
detect the bottom between any two adjacent notches, and yield multiple results that do not represent 
the true minimum, i.e. the threshold value. Moreover, due to the roughness of the histogram, using 
one polynomial to fit the entire histogram would yield a threshold value with significant uncertainty. 
Therefore, a step-wise polynomial fitting was the best choice to solve the threshold from the bottom 
of the valley.  

The iterative process started at the minimum value of the backscatter coefficient value. First, a 
partial histogram was extracted. Second, a third-order polynomial was fitted to the selected 
histogram. Last, the local minimum (turning point) was solved from the first derivative of the 
polynomial equal to zero. As the third-order polynomial was used, the smaller value of the solution 
was extracted and recorded as the threshold candidate (Figure 5a). Meanwhile, the difference 
between the two turning points are calculated, and 1/10 of the result value is stored as the step size. 
The process continued, and moved with the calculated step size to the next part of the histogram, 
another polynomial was fitted, and a second threshold candidate was solved (Figure 5b). The iterative 
process continued until the solved threshold value moved outside the fitting area of the selected 
histogram (Figure 5c). Finally, the optimal threshold value was obtained from fitting through the pre-
determined candidates (Figure 5d). It is worth mentioning that when the slope of the two sides of the 
valley is different, i.e. very asymmetric shape, the candidates were scattered along with the histogram 
rather than clustered at the bottom of the valley. Therefore, fitting through all the candidates instead 
of simply calculating the average assures the optimal result. 
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(a) (b) 

(c) (d) 

Figure 5. Illustration of the automatic histogram threshold generation, where the image histogram 
was shown as grey color bars, threshold candidates from the step-wise polynomial fitting as shown 
in red stars, the fitted polynomials were shown in blue curves, and the final threshold was shown in 
the green star. (a) The first step of threshold candidate generation with a fitted polynomial. (b) Mid-
step of threshold candidate generation with a fitted polynomial. (c) Last step of threshold candidate 
generation with a fitted polynomial. (d) Final threshold generation. 

After the threshold was determined, each pixel in the SAR image was classified into either water 
or land, depending on whether its value was smaller or greater than the threshold, respectively. Post-
processing was used to refine the classification result. First, morphologic dilation [37] was performed 
by filling any holes or gaps that appeared as “islands” inside the big water bodies. A size filter was 
applied to remove any isolated water regions that were smaller than 3 pixels.  

To further test the proposed automatic thresholding method on different sensor types, one scene 
of Sentinel-1 data from the same area was employed. For sentinel-1 data pre-processing, the Science 
Toolbox Exploitation Platform (SNAP) Toolkit developed by the European Space Agency was used. 
The workflow was built to generate the HH intensity image from high-resolution Level-1 ground 
range detected products, and then the image was pre-processed for geocoding, terrain-flatten, and 
the signal was corrected to sigma naught backscatter coefficients (β0). The boxcar de-speckle filter 
with 5 × 5 kernels was used to reduce speckle noise. Terrain flattening and terrain correction was 
conducted using the recently released Shuttle Radar Topography Mission (STRM) 1 arc-second 
(approximately 30 m) digital elevation model (DEM) (SRTMGL1). 

In addition, the Otsu thresholding method [38], one of the most commonly used automatic 
image thresholding techniques, was utilized to obtain another surface water map and compared with 
the one generated with the proposed SAT method. The threshold value was determined through an 
iterative process that minimizes the within-class variance at the same time it maximizes between-
class variances.  
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To access the binary classification generated by the SAT, both qualitative and quantitative 
analyses were conducted based on the manually digitized shapefile and 7-meter SPOT true color 
imagery. As the shape and the presence of the wetland can be different between the creation dates, 
the reference data were visually interpreted using the SPOT imagery.  

The last step was to process a total of 51 Radarsat-2 scenes of the overlapping area with the 
above-mentioned procedure. As the study area has a flat terrain, the displacement introduced by 
different incident angles was less than one pixel (~7-meter) after geo-referencing with the 2-meter 
DEM. Surface water bodies were extracted with the proposed SAT method, and the total area of the 
delineated surface water extent was calculated and plotted against the precipitation data to conduct 
the time series analysis.  

3. Results  

3.1. Surface Water Classification 

The surface water map generated from proposed SAT method with Radarsat-2 data, acquired 
on 5 August 2016, is shown in Figure 6a. For comparison, the corresponding manual digitized 
polygons are shown in Figure 6b. The majority of surface water bodies were successfully identified 
and extracted, with the kappa coefficient k = 0.9822. A few linear water streams are missing in the 
classification results as omission errors, and a few commission errors are evident near the bottom of 
the site, which appears to be inundated water or flooded vegetation falsely identified as open surface 
water. 

  
(a) (b) 

Figure 6. (a) Open water extent map derived from Radarsat-2 Thresholding. Blue polygons indicated 
identified surface water and the beige background represented the land. (b) Manually digitized 
polygons were shown in blue overlaid on true color SPOT imagery. 

The surface water map generated from Sentinel-1 data with proposed SAT (Figure 7a) is 
consistent with the manually digitized polygons over large water bodies. Similar to the Radarsat-2 
result (Figure 6a), the majority of surface water bodies were successfully identified and extracted 
with k = 0.9797, while part of the water streams was missing in the classification results as omission 
errors. On the other hand, the water/land class derived from the same Sentinel-1 data with Otsu 
thresholding is illustrated in Figure 7b, and the surface water extent was not successfully extracted, 
with k = −0.7181. Although all water bodies are identified, the majority of the land is falsely classified 
as water.  
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(a) (b) 

Figure 7. (a) Open water extent map derived from Sentinel-1 using SAT. Blue pixels indicated 
identified surface water and the beige pixels represented the lands. (b) Open water extent map 
derived from Sentinel-1 using Otsu Thresholding. Blue pixels indicated identified surface water and 
the beige pixels represented the lands. 

3.2. Accuracy Assessment 

One scene of a high-resolution SPOT multispectral image was chosen to be within the closest 
date with the Radarsat-2 data for comparison and accuracy assessment. Figure 8a shows the water 
bodies derived from SPOT NDWI image using Otsu thresholding and illustrates that large size open 
water bodies, such as the lakes, have been successfully delineated with k = 0.9586. Also, the linear 
streams which connect the lakes have been differentiated from the land. However, the built-up land 
features (top left) are falsely identified as surface water objects. The built-up land features have the 
same positive values as water features in the NDWI image. This is due to the fact that the index is 
able to efficiently suppress vegetation and soil to negative values, but fails to separate the built-up 
land background from the positive value range.  

  
(a) (b) 

Figure 8. (a) Open water extent map derived from NDWI Thresholding. Blue polygons indicate 
identified surface water and the purple background represented land. (b) NDWI result generated 
from SPOT 7 imagery, where blue to red indicate water index from high to low. 
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To quantitatively evaluate the classification result, a manually digitized shapefile was used to 
validate the accuracy of classifications and the results are shown in Table 1. As illustrated in Table 1, 
the overall accuracy for both Radarsat-2 and Sentinel-1 SAR data exceeds over 95%, and SAR water 
class has higher total accuracy than the one generated from the NDWI image. The water classification 
of Sentinel-1 data using Otsu’s method has a total accuracy of 60.34%. 

Table 1. The matrix of classification accuracy. 

Dataset (Method) False Negative (%) False Positive (%) Total Accuracy (%) 
Radarsat-2 (SAT) 1.15 0.22 98.62 
Sentinel-1 (SAT) 1.27 0.29 99.70 
Sentinel-1 (Otsu) 0.29 39.35 60.34 

NDWI (Otsu) 3.09 0.17 96.73 

For the accuracy of SAR derived water class, the false identification rate is higher than that 
derived from NDWI image, indicating more land features may have been falsely identified as water 
(i.e. commission errors were high).  

3.3. Time-Series Analysis 

The time-series extent of surface water was extracted using the Radarsat-2 data from May 2008 
to August 2016 shows the dynamics of surface water. As shown in Figure 9, the surface water extent 
generally varies in relation to monthly accumulated precipitation as measured at the local weather 
station. Decreases in precipitation were associated with a lower area of surface water for several of 
the observed months (August 2008, May 2014, August 2014, and June 2015). The area of water bodies 
follows the rate of 3-Day accumulated precipitation reasonably well. In general, the area of water 
bodies increases after an increase of 3-Day accumulated precipitation and the change in surface water 
agrees with the change in precipitation. The area of water bodies follows the rate of 3-Day 
accumulated precipitation reasonably well. In general, the area of water bodies increases after an 
increase of 3-Day accumulated precipitation and the change in surface water agrees with the change 
in precipitation. 

 

Figure 9. Time series of Radarsat-2 derived area of surface water extent (km squared), 3-Day 
precipitation (mm) and monthly precipitation (mm). The area of water was calculated from the time 
series of classification maps. The 3-Day and monthly accumulated precipitation data were collected 
by a nearby weather station in Algonquin Park East, Ontario. 
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4. Discussion 

For the entire Radarsat-2 dataset (51 scenes), with the average imagery size of 2700 pixels by 
3800 pixels, the proposed method computes the series of water maps in 559.26 seconds on a computer 
equipped with Intel® i7-6700 3.4 GHz and 16 GB RAM. Among the whole processing time, SAT 
thresholding takes 248.92 seconds, post-processing takes 12.95 seconds, and writing the image file 
takes 297.39 seconds.  

The proposed SAT thresholding method successfully extracted the majority of surface water 
bodies. This can also be observed from the histogram (Figure 10), as the proposed method detects the 
threshold close to the bottom of the valley (indicated by the blue line), while the Otsu’s method 
locates the threshold near the peak (indicated by the red line). It can be observed that the surface 
water bodies with the flooded areas only cover a minor portion in the study area, producing a 
different histogram from the water dominated studies as shown in Martinis et al. 2009 [27], and the 
Otsu method failed to properly classify the surface water from the SAR data within our study area.  

 

Figure 10. Histogram of Sentinel-1 image with threshold solved by proposed SAT method marked by 
a blue line, and Otsu threshold value marked by a red line. 

It is worth mentioning that Otsu thresholding is more effective to separate water and non-water 
classes when the histogram exhibited as a bi-modal histogram, i.e. two distinct objects presented as 
one maximum for water and one maximum for land. This can be observed in the NDWI image, and 
Otsu method is able to separate the two classes with an accuracy of 96%. On the other hand, the 
histogram of boxcar filtered SAR data only has a single modal presented, as shown in Figure 10, using 
Otsu yield low classification accuracy, around 40%. To better align with the literature, the de-speckle 
filter employed in Otsu thresholding for SAR data is Lee filter, instead of the boxcar filter used by the 
proposed method, and the classification accuracy raised to a reasonable 60%.  

A variety of factors might complicate the derivation of water surfaces from SAR data. The low 
backscattering from some bare agriculture fields and radar shadows led to the overestimation of the 
water extent. As well, some inundated water resulting from heavy precipitation appeared in the SAR 
data, but was not evident as water in the reference data. For the water surface derived from the NDWI 
image, the higher commission errors than the omission errors are possibly due to flooded vegetation 
being classified as water. For the water surface derived from the SAR data, omission errors were 
observed from smooth objects like pavement and bare soil. Future studies can include additional road 
masks to reduce the overestimation introduced by roads in urban areas. Omission errors were 
observed from flooded vegetation close to rivers and lakes (left side of Figure 5(b)). This finding is 
consistent with previous studies that have found fully Polarimetric data were preferred for detecting 
flooded vegetation [25,39]. Furthermore, the Radarsat-2 detected inundated water areas unidentified 
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in the provincial inventory are typically smaller water bodies. Those areas can be a potential breeding 
area for water birds.  

Notably, part of the commission errors may also result from the difference in acquisition time 
between the spectral image and the SAR image. The reference manual digitized shapefile was 
generated from interpretation from the recent spectral image, and the actual boundary observed from 
SAR data did not precisely follow the same edges from the spectral image. Also, the influence of 
roughening of the water due to wind on the radar backscatter results in diminished water/land 
contrast, which can affect the classification accuracy. Future study will cooperate with multi-temporal 
filters [40] and non-local speckle filters [41] to potentially reduce the speckle-noise while the time-
sensitive edges are adapted. 

5. Conclusions 

An automatic surface water extraction algorithm was developed in this study. The result of 
developed fully automatic SAT method demonstrates the ability to map the dynamics of surface 
water with promising accuracy. The preprocessing of SAR data and classification is fully automatic 
utilizing the Geomaticas and the SNAP toolbox and Python packages. The whole process is fully 
automatic, and the default values that have been encoded are found to be efficient in extracting 
surface water extent for different scenes. Our findings demonstrate that using an SAT technique can 
automatically generate the highly accurate surface water extent from C-band SAR data (Radarsat-2 
and Sentinel-1) in an efficient and timely manner. Based on the accuracy assessment, 98% of the water 
bodies have been successfully extracted, and the surface water extent closely follows the boundaries 
of the main water bodies, such as the lakes and rivers. Omission errors observed from small, linear 
targets, i.e. streams and river, and commission errors are identified from roads and inundated 
vegetation. Future study can include local road masks to reduce the overestimation, and test the 
effects of non-local speckle filter for minimizing the influence of roughening of the water due to wind. 
Also, it worth mentioning that the proposed method has only been applied to flat terrain, and 
additional assessments should consider outcomes for rough terrain. Another valuable finding of this 
study is that time-series results reveal seasonal dynamics of inundation, and show a strong 
relationship of the response in surface water extent to the changes in precipitation.  

Using SAR data thus permits a detailed timely fashioned surface water map for wetland habitat 
monitoring that was previously missed from inventory data and land classification map. The fully 
automatic algorithm developed in this study can be implemented in an operational system to 
generate provincial or national scale, and benefit the long-term water monitoring frameworks for 
wetland and management. Its ability to track the changes on the surface water will facilitate the 
habitat assessments for biodiversity dependent on wetlands, such as the effect of temporal variation 
in wetland habitat availability on breeding American black duck populations and standardized 
monitoring of change in a wetland habitat. 
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Appendix A 

Table A1. Summary of Radarsat-2 data acquired over the study sites from May 2008 to August 2016. 

Incident Angle (°)  Polarization Direction 



Water 2020, 12, 872 12 of 14 

 

Acquisition 
Time 

Image 
Mode 

Near Far 
Resolution (m) 

(range × azimuth) 
12 May 2008 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Descending 
26 July 2008 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

19 August 2008 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
23 August 2008 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
18 August 2009 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 

16 July 2010 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
20 July 2010 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 

6 August2010 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
9 August 2010 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

13 August 2010 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
30 August 2010 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 

11 July 2011 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
18 July 2011 FQ14 33.4 35.1 5.2 × 7.6 Quad Pol Ascending 

4 August 2011 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
11 August 2011 FQ14 33.4 35.1 5.2 × 7.6 Quad Pol Ascending 
28 August 2011 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

1 May 2012 FQ14 33.4 35.1 5.2 × 7.6 Quad Pol Ascending 
18 May 2012 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
25 May 2012 FQ14 33.4 35.1 5.2 × 7.6 Quad Pol Ascending 
9 May 2014 FQ23 41.9 43.3 5.2 × 7.6 Quad Pol Descending 
12 May 2014 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
25 June 2014 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
29 June 2014 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 

12 August 2014 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
16 August 2014 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 

7 May 2015 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
10 May 2015 FQ14 33.4 35.1 5.2 × 7.6 Quad Pol Ascending 
13 May 2015 FQ28 46 47.2 5.2 × 7.6 Quad Pol Ascending 
17 May 2015 FQ9 28 29.8 5.2 × 7.6 Quad Pol Ascending 
20 May 2015 FQ23 41.9 43.3 5.2 × 7.6 Quad Pol Ascending 
24 May 2015 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
27 May 2015 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
17 June 2015 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
24 June 2015 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
11 July 2015 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
14 July 2015 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

4 August 2015 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
7 August 2015 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

28 August 2015 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Ascending 
5 May 2016 FQ28 46 47.2 5.2 × 7.6 Quad Pol Descending 
7 May 2016 FQ28 46 47.2 5.2 × 7.6 Quad Pol Ascending 
14 May 2016 FQ23 41.9 43.3 5.2 × 7.6 Quad Pol Ascending 
18 May 2016 FQ4 22.1 24.1 5.2 × 7.6 Quad Pol Descending 

525 May 2016 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
14 June 2016 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
18 June 2016 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
8 July 2016 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 

12 July 2016 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
5 August 2016 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 

25 August 2016 FQ18 37.4 38.9 5.2 × 7.6 Quad Pol Ascending 
29 August 2016 FQ9 28 29.8 5.2 × 7.6 Quad Pol Descending 
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