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Key Messages

1. Annual precipitation and river-flow increases are observed now in 
the Midwest and the Northeast regions. Very heavy precipitation 
events have increased nationally and are projected to increase in 
all regions. The length of dry spells is projected to increase in most 
areas, especially the southern and northwestern portions of the 
contiguous United States.

2. Short-term (seasonal or shorter) droughts are expected to intensify in 
most U.S. regions. Longer-term droughts are expected to intensify in 
large areas of the Southwest, southern Great Plains, and Southeast.

3. Flooding may intensify in many U.S. regions, even in areas where 
total precipitation is projected to decline. 

4. Climate change is expected to affect water demand, groundwater withdrawals, and aquifer 
recharge, reducing groundwater availability in some areas.

5. Sea level rise, storms and storm surges, and changes in surface and groundwater use patterns 
are expected to compromise the sustainability of coastal freshwater aquifers and wetlands.

6. Increasing air and water temperatures, more intense precipitation and runoff, and intensifying 
droughts can decrease river and lake water quality in many ways, including increases in 
sediment, nitrogen, and other pollutant loads.

7. Climate change affects water demand and the ways water is used within and across regions and 
economic sectors. The Southwest, Great Plains, and Southeast are particularly vulnerable to 
changes in water supply and demand.

8. Changes in precipitation and runoff, combined with changes in consumption and withdrawal, 
have reduced surface and groundwater supplies in many areas. These trends are expected to 
continue, increasing the likelihood of water shortages for many uses. 

9. Increasing flooding risk affects human safety and health, property, infrastructure, economies, 
and ecology in many basins across the United States.

10. In most U.S. regions, water resources managers and planners will encounter new risks, 
vulnerabilities, and opportunities that may not be properly managed within existing practices. 

11. Increasing resilience and enhancing adaptive capacity provide opportunities to strengthen water 
resources management and plan for climate change impacts. Many institutional, scientific, 
economic, and political barriers present challenges to implementing adaptive strategies.

WATER RESOURCES3

This chapter contains three main sections: climate change impacts on the water cycle, climate change impacts on water resources 
use and management, and adaptation and institutional responses. Key messages for each section are summarized above.

Climate Change Impacts on Water Resources Use and Managment

Climate Change Impacts on the Water Cycle

Adaptation and Institutional Responses
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Climate Change Impacts on the Water Cycle
Water cycles constantly from the atmosphere to the land and 
the oceans (through precipitation and runoff) and back to the 
atmosphere (through evaporation and the release of water 
from plant leaves), setting the stage for all life to exist. The 
water cycle is dynamic and naturally variable, and societies 

and ecosystems are accustomed to functioning within this vari-
ability. However, climate change is altering the water cycle in 
multiple ways over different time scales and geographic areas, 
presenting unfamiliar risks and opportunities. 

Key Message 1: Changing Rain, Snow, and Runoff

Annual precipitation and river-flow increases are observed now in the Midwest and the 
Northeast regions. Very heavy precipitation events have increased nationally and are 

projected to increase in all regions. The length of dry spells is projected to increase in most 
areas, especially the southern and northwestern portions of the contiguous United States.

Annual average precipitation over the continental U.S. as 
a whole increased by close to two inches (0.16 inches per 
decade) between 1895 and 2011.1,2 In recent decades, an-
nual average precipitation increases have been observed 
across the Midwest, Great Plains, the Northeast, and 
Alaska, while decreases have been observed in Hawai‘i 
and parts of the Southeast and Southwest (Ch. 2: Our 
Changing Climate, Figure 2.12). Average annual precipita-
tion is projected to increase across the northern U.S., and 
decrease in the southern U.S., especially the Southwest. 
(Ch. 2: Our Changing Climate, Figures 2.14 and 2.15).3

The number and intensity of very heavy precipitation 
events (defined as the heaviest 1% of all daily events from 
1901 to 2012) have been increasing significantly across 
most of the United States. The amount of precipitation 
falling in the heaviest daily events has also increased 
in most areas of the United States (Ch. 2: Our Changing 
Climate, Figure 2.17). For example, from 1950 to 2007, 
daily precipitation totals with 2-, 5-, and 10-year aver-
age recurrence periods increased in the Northeast and 
western Great Lakes.4 Very heavy precipitation events are 
projected to increase everywhere (Ch. 2: Our Changing 
Climate, Figure 2.19).5 Heavy precipitation events that his-
torically occurred once in 20 years are projected to occur 
as frequently as every 5 to 15 years by late this century.6 
The number and magnitude of the heaviest precipitation 
events is projected to increase everywhere in the United 
States (Ch. 2: Our Changing Climate, Figure 2.13).

Dry spells are also projected to increase in length in most 
regions, especially in the southern and northwestern por-
tions of the contiguous United States (Ch. 2: Our Changing 
Climate, Figure 2.13). Projected changes in total average 
annual precipitation are generally small in many areas, but 
both wet and dry extremes (heavy precipitation events 

The cycle of life is intricately joined with the cycle of water. 

— Jacques-Yves Cousteau

Figure 3.1. These projections, assuming continued increases in 
heat-trapping gas emissions (A2 scenario; Ch. 2: Our Changing 
Climate), illustrate: a) major losses in the water content of the 
snowpack that fills western rivers (snow water equivalent, or 
SWE); b) significant reductions in runoff in California, Arizona, 
and the central Rocky Mountains; and c) reductions in soil 
moisture across the Southwest. The changes shown are for 
mid-century (2041-2070) as percentage changes from 1971-
2000 conditions (Figure source: Cayan et al. 201318). 

Projected Changes in Snow, Runoff, and Soil Moisture
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and length of dry spells) are projected to increase substantially 
almost everywhere.

The timing of peak river levels has changed in response to 
warming trends. Snowpack and snowmelt-fed rivers in much 
of the western U.S. have earlier peak flow trends since the mid-
dle of the last century, including the past decade (Ch. 2: Our 
Changing Climate).7,8 This is related to declines in spring snow-
pack, earlier snowmelt-fed streamflow, and larger percentages 
of precipitation falling as rain instead of snow. These changes 
have taken place in the midst of considerable year-to-year 
variability and long-term natural fluctuations of the western 
U.S. climate, as well as other influences, such as the effects of 
dust and soot on snowpacks.7,9 There are both natural and hu-
man influences on the observed trends.10,11 However, in stud-
ies specifically designed to differentiate between natural and 
human-induced causes, up to 60% of these changes have been 
attributed to human-induced climate warming,10 but only 
among variables that are more responsive to warming than to 
precipitation variability, such as the effect of air temperature 
on snowpack.12

Other historical changes related to peak river-flow have been 
observed in the northern Great Plains, Midwest, and North-
east,13,14 along with striking reductions in lake ice cover (Ch. 2: 
Our Changing Climate).15,16

Permafrost is thawing in many parts of Alaska, a trend that not 
only affects habitats and infrastructure but also mobilizes sub-
surface water and reroutes surface water in ways not previ-
ously witnessed.17 Nationally, all of these trends are projected 
to become even more pronounced as the climate continues to 
warm (Figure 3.1).

Evapotranspiration (ET – the evaporation of moisture from soil, 
on plants and trees, and from water bodies; and transpiration, 
the use and release of water from plants), is the second largest 
component of the water cycle after precipitation. ET responds 
to temperature, solar energy, winds, atmospheric humidity, 
and moisture availability at the land surface and regulates 
amounts of soil moisture, groundwater recharge, and runoff.19 
Transpiration comprises between 80% and 90% of total ET 
on land (Ch. 6: Agriculture).20 In snowy settings, sublimation 
of snow and ice (loss of snow and ice directly into water va-
por without passing through a liquid stage) can increase these 
returns of water to the atmosphere, sometimes in significant 
amounts.21 These interactions complicate estimation and pro-
jection of regional losses of water from the land surface to the 
atmosphere.

Globally-averaged ET increased between 1982 and 1997 but 
stopped increasing, or has decreased, since about 1998.22 In 
North America, the observed ET decreases occurred in water-
rich rather than water-limited areas. Factors contributing to 
these ET decreases are thought to include decreasing wind 

Figure 3.2. Changes in annual surface soil moisture per year over the period 1988 to 2010 based on multi-
satellite datasets. Surface soil moisture exhibits wetting trends in the Northeast, Florida, upper Midwest, and 
Northwest, and drying trends almost everywhere else. (Images provided by W. Dorigo35). 

Annual Surface Soil Moisture Trends
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speed,23,24 decreasing solar energy at the land surface due to 
increasing cloud cover and concentration of small particles 
(aerosols),25 increasing humidity,23 and declining soil moisture 
(Figure 3.2).26 

Evapotranspiration projections vary by region,27,28,29,30 but the 
atmospheric potential for ET is expected to increase; actual ET 
will be affected by regional soil moisture changes. Much more 
research is needed to confidently identify historical trends, 
causes, and implications for future ET trends.31 This repre-
sents a critical uncertainty in projecting the impacts of climate 
change on regional water cycles. 

Soil moisture plays a major role in the water cycle, regulat-
ing the exchange of water, energy, and carbon between the 
land surface and the atmosphere,22 the production of runoff, 
and the recharge of groundwater aquifers. Soil moisture is 
projected to decline with higher temperatures and attendant 
increases in the potential for ET in much of the country, espe-
cially in the Great Plains,29 Southwest,18,32,33 and Southeast.28,34 

Runoff and streamflow at regional scales declined during the 
last half-century in the Northwest.36 Runoff and streamflow 
increased in the Mississippi Basin and Northeast, with no clear 
trends in much of the rest of the continental U.S.,37 although 
a declining trend is emerging in annual runoff in the Colorado 
River Basin.38 These changes need to be considered in the con-
text of tree-ring studies in California’s Central Valley, the Colo-
rado River and Wind River basins, and the southeastern U.S. 
that indicate that these regions have experienced prolonged, 
even drier and wetter conditions at various times in the past 
two thousand years.8,39,40 Human-caused climate change, when 
superimposed on past natural variability, may amplify these 
past extreme conditions. Projected changes in runoff for eight 
basins in the Northwest, northern Great Plains, and Southwest 
are illustrated in Figure 3.4.

Basins in the southwestern U.S. and southern Rockies (for ex-
ample, the Rio Grande and Colorado River basins) are project-
ed to experience gradual runoff declines during this century. 
Basins in the Northwest to north-central U.S. (for example, the 

Figure 3.3. Changes in seasonal surface soil moisture per year over the period 1988 to 2010 based on multi-satellite 
datasets.35 Seasonal drying is observed in central and lower Midwest and Southeast for most seasons (with the exception 
of the Southeast summer), and in most of the Southwest and West (with the exception of the Northwest) for spring 
and summer. Soil moisture in the upper Midwest, Northwest, and most of the Northeast is increasing in most seasons. 
(Images provided by W. Dorigo). 

Seasonal Surface Soil Moisture Trends
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Columbia and the Missouri River basins) are projected to ex-
perience little change through the middle of this century, and 
increases by late this century. 

Projected changes in runoff differ by season, with cool season 
runoff increasing over the west coast basins from California to 
Washington and over the north-central U.S. (for example, the 
San Joaquin, Sacramento, Klamath, Missouri, and Columbia 
River basins). Basins in the southwestern U.S. and southern 
Rockies are projected to see little change to slight decreases in 
the winter months. 

Warm season runoff is projected to decrease substantially over 
a region spanning southern Oregon, the southwestern U.S., 
and southern Rockies (for example, the Klamath, Sacramento, 
San Joaquin, Rio Grande, and the Colorado River basins), and 
change little or increase slightly north of this region (for ex-
ample, the Columbia and Missouri River basins).

In most of these western basins, these projected streamflow 
changes are outside the range of historical variability, especial-
ly by the 2050s and 2070s. The projected streamflow changes 
and associated uncertainties have water management implica-
tions (discussed below). 

Figure 3.4. Annual and seasonal streamflow projections based on the B1 (with substantial emissions reductions), A1B (with gradual 
reductions from current emission trends beginning around mid-century), and A2 (with continuation of current rising emissions trends) 
CMIP3 scenarios for eight river basins in the western United States. The panels show percentage changes in average runoff, with 
projected increases above the zero line and decreases below. Projections are for annual, cool, and warm seasons, for three future 
decades (2020s, 2050s, and 2070s) relative to the 1990s. (Source: U.S. Department of the Interior – Bureau of Reclamation 2011;41 
Data provided by L. Brekke, S. Gangopadhyay, and T. Pruitt)

Streamflow Projections for River Basins in the Western U.S.
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Key Message 2: Droughts Intensify 

Short-term (seasonal or shorter) droughts are expected to intensify in most  
U.S. regions. Longer-term droughts are expected to intensify in large areas of  

the Southwest, southern Great Plains, and Southeast. 

Annual runoff and related river-flow are projected to de-
cline in the Southwest42,43 and Southeast,34 and to increase 
in the Northeast, Alaska, Northwest, and upper Midwest re-
gions,42,43,44,45 broadly mirroring projected precipitation pat-
terns.46 Observational studies47 have shown that decadal fluc-
tuations in average temperature (up to 1.5°F) and precipitation 
changes of 10% have occurred in most areas of the U.S. during 
the last century. Fluctuations in river-flow indicate that effects 
of temperature are dominated by fluctuations in precipitation. 
Nevertheless, as warming affects water cycle processes, the 
amount of runoff generated by a given amount of precipitation 
is generally expected to decline.37 

Droughts occur on time scales ranging from season-to-season 
to multiple years and even multiple decades. There has been 
no universal trend in the overall extent of drought across the 
continental U.S. since 1900. However, in the Southwest, wide-

spread drought in the past decade has reflected both precipi-
tation deficits and higher temperatures8 in ways that resemble 
projected changes.48 Long-term (multi-seasonal) drought con-
ditions are also projected to increase in parts of the Southeast 
and possibly in Hawai‘i and the Pacific Islands (Ch. 23: Hawai‘i 
and Pacific Islands). Except in the few areas where increases 
in summer precipitation compensate, summer droughts (Ch. 
2: Our Changing Climate) are expected to intensify almost ev-
erywhere in the continental U.S.49 due to longer periods of dry 
weather and more extreme heat,33 leading to more moisture 
loss from plants and earlier soil moisture depletion in basins 
where snowmelt shifts to earlier in the year.50,51 Basins watered 
by glacial melt in the Sierra Nevada, Glacier National Park, and 
Alaska may experience increased summer river-flow in the 
next few decades, until the amounts of glacial ice become too 
small to contribute to river-flow.52,53

Key Message 3: Increased Risk of Flooding in Many Parts of the U.S.

Flooding may intensify in many U.S. regions, even in areas  
where total precipitation is projected to decline.  

There are various types of floods (see “Flood Factors and Flood 
Types”), some of which are projected to increase with contin-
ued climate change. Floods that are closely tied to heavy pre-
cipitation events, such as flash floods and urban floods, as well 
as coastal floods related to sea level rise and the resulting in-
crease in storm surge height and inland impacts, are expected 
to increase. Other types of floods result from a more complex 
set of causes. For example, river floods are basin specific and 
dependent not only on precipitation but also on pre-existing 
soil moisture conditions, topography, and other factors, in-
cluding important human-caused changes to watersheds and 
river courses across the United States.54,55,56,57  

Significant changes in annual precipitation (Ch. 2: Our Changing 
Climate) and soil moisture (Figures 3.2 and 3.3), among other 
factors, are expected to affect annual flood magnitudes (Fig-
ure 3.5) in many regions.58 River floods have been increasing in 
the Northeast and Midwest, and decreasing in the Southwest 
and Southeast.56,57,58,59 These decreases are not surprising, as 
short duration very heavy precipitation events often occur 
during the summer and autumn when rivers are generally low. 

However, these very heavy precipitation events can and do 
lead to flash floods, often exacerbated in urban areas by the 
effect of impervious surfaces on runoff. 

Heavy rainfall events are projected to increase, which is ex-
pected to increase the potential for flash flooding. Land cover, 
flow and water-supply management, soil moisture, and chan-
nel conditions are also important influences on flood genera-
tion55 and must be considered in projections of future flood 
risks. Region-specific storm mechanisms and seasonality also 
affect flood peaks.57 Because of this, and limited capacity to 
project future very heavy events with confidence, evaluations 
of the relative changes in various storm mechanisms may be 
useful.57,60,61 Warming is likely to directly affect flooding in 
many mountain settings, as catchment areas receive increas-
ingly more precipitation as rain rather than snow, or more 
rain falling on existing snowpack.62 In some such settings, river 
flooding may increase as a result – even where precipitation 
and overall river flows decline (Ch. 2: Our Changing Climate). 
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Key Message 4: Groundwater Availability

Climate change is expected to affect water demand, groundwater withdrawals,  
and aquifer recharge, reducing groundwater availability in some areas.

Groundwater is the only perennial source of fresh water in 
many regions and provides a buffer against climate extremes. 
As such, it is essential to water supplies, food security, and eco-
systems. Though groundwater occurs in most areas of the U.S., 
the capacity of aquifers to store water varies depending on the 
geology of the region. (Figure 3.6b illustrates the importance 
of groundwater aquifers.) In large regions of the Southwest, 
Great Plains, Midwest, Florida, and some other coastal areas, 
groundwater is the primary water supply. Groundwater aqui-
fers in these areas are susceptible to the combined stresses 
of climate and water-use changes. For example, during the 
2006–2009 California drought, when the source of irrigation 
shifted from surface water to predominantly groundwater, 
groundwater storage in California’s Central Valley declined by 
an amount roughly equivalent to the storage capacity of Lake 
Mead, the largest reservoir in the United States.64

Climate change impacts on groundwater storage are expected 
to vary from place to place and aquifer to aquifer. Although 
precise responses of groundwater storage and flow to climate 
change are not well understood nor readily generalizable, re-
cent and ongoing studies65,66,67,68 provide insights on various 
underlying mechanisms: 

1)  Precipitation is the key driver of aquifer recharge in water-
limited environments (like arid regions), while evapotrans-

piration (ET) is the key driver in energy-limited environ-
ments (like swamps or marshlands). 

2)  Climate change impacts on aquifer recharge depend on 
several factors, including basin geology, frequency and 
intensity of high-rainfall periods that drive recharge, sea-
sonal timing of recharge events, and strength of ground-
water-surface water interaction. 

3)  Changes in recharge rates are amplified relative to chang-
es in total precipitation, with greater amplification for 
drier areas. 

With these insights in mind, it is clear that certain groundwa-
ter-dependent regions are projected to incur significant cli-
mate change related challenges. In some portions of the coun-
try, groundwater provides nearly 100% of the water supply 
(Figure 3.6b). Seasonal soil moisture changes are a key aquifer 
recharge driver and may provide an early indication of general 
aquifer recharge trends. Thus, the observed regional reduc-
tions in seasonal soil moisture for winter and spring (Figure 
3.3) portend adverse recharge impacts for several U.S. regions, 
especially the Great Plains, Southwest, and Southeast. 

Despite their critical national importance as water supply 
sources (see Figure 3.6), aquifers are not generally monitored 

Figure 3.5. Trend magnitude (triangle size) and direction (green = increasing trend, brown = 
decreasing trend) of annual flood magnitude from the 1920s through 2008. Flooding in local 
areas can be affected by multiple factors, including land-use change, dams, and diversions of 
water for use. Most significant are increasing trends for floods in Midwest and Northeast, and 
a decreasing trend in the Southwest. (Figure source: Peterson et al. 201363).

Trends in Flood Magnitude



77 CLIMATE CHANGE IMPACTS IN THE UNITED STATES

3: WATER RESOURCES

in ways that allow for clear identification of climatic influences 
on groundwater recharge, storage, flows, and discharge. Near-
ly all monitoring is focused in areas and aquifers where varia-
tions are dominated by groundwater pumping, which largely 
masks climatic influences,69 highlighting the need for a national 
framework for groundwater monitoring.70

Generally, impacts of changing demands on groundwater sys-
tems, whether due directly to climate changes or indirectly 
through changes in land use or surface-water availability and 
management, are likely to have the most immediate effects on 
groundwater availability;67,71 changes in recharge and storage 
may be more subtle and take longer to emerge. Groundwater 
models have only recently begun to include detailed represen-

Figure 3.6. (a) Groundwater aquifers are found throughout the U.S., but they vary widely in terms of ability to store and recharge 
water. The colors on this map illustrate aquifer location and geology: blue colors indicate unconsolidated sand and gravel; yellow 
is semi-consolidated sand; green is sandstone; blue or purple is sandstone and carbonate‐rock; browns are carbonate-rock; red 
is igneous and metamorphic rock; and white is other aquifer types. (Figure source: USGS). (b) Ratio of groundwater withdrawals 
to total water withdrawals from all surface and groundwater sources by county. The map illustrates that aquifers are the main 
(and often exclusive) water supply source for many U.S. regions, especially in the Great Plains, Misssissippi Valley, east central 
U.S., Great Lakes region, Florida, and other coastal areas. Groundwater aquifers in these regions are prone to impacts due to 
combined climate and water-use change. (Data from USGS 2005).

Principal U.S. Groundwater Aquifers and Use
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tations of groundwater recharge and interactions with sur-
face-water and land-surface processes,50 with few projections 
of groundwater responses to climate change.68,72 However, sur-
face water declines have already resulted in larger groundwater 
withdrawals in some areas (for example, in the Central Valley 
of California and in the Southeast) and may be aggravated by 
climate change challenges.73 In many mountainous areas of the 
U.S., groundwater recharge is disproportionately generated 
from snowmelt infiltration, suggesting that the loss of snow-
pack will affect recharge rates and patterns.50,51,66,74 Models do 
not yet include dynamic representations of the groundwater 
reservoir and its connections to streams, the soil-vegetation 
system, and the atmosphere, limiting the understanding of the 

potential climate change impacts on groundwater and ground-
water-reliant systems.75 

As the risk of drought increases, groundwater can play a key 
role in enabling adaptation to climate variability and change. 
For example, groundwater can be augmented by surface wa-
ter during times of high flow through aquifer recharge strate-
gies, such as infiltration basins and injection wells. In addition, 
management strategies can be implemented that use surface 
water for irrigation and water supply during wet periods, and 
groundwater during drought, although these approaches face 
practical limitations within current management and institu-
tional frameworks.71,76  

Key Message 5: Risks to Coastal Aquifers and Wetlands

Sea level rise, storms and storm surges, and changes in surface and groundwater  
use patterns are expected to compromise the sustainability  

of coastal freshwater aquifers and wetlands.

With more than 50% of the nation’s population concentrated 
near coasts (Chapter 25: Coasts),77 coastal aquifers and wet-
lands are precious resources. These aquifers and wetlands, 
which are extremely important from a biological/biodiver-
sity perspective (see Ch. 8: Ecosystems; Ch. 25: Coasts), may 
be particularly at risk due to the combined effects of inland 
droughts and floods, increased surface water impoundments 
and diversions, increased groundwater withdrawals, and ac-
celerating sea level rise and greater storm surges.78,79 Estuaries 
are particularly vulnerable to changes in freshwater inflow and 
sea level rise by changing salinity and habitat of these areas.

Several coastal areas, including the Delaware, Susquehanna, 
and Potomac River deltas on the Northeast seaboard, most 
of Florida, the Apalachicola and Mobile River deltas and bays, 
the Mississippi River delta in Louisiana, and the delta of the 
Sacramento-San Joaquin rivers in northern California, are par-
ticularly vulnerable due to the combined effects of climate 
change and other human-caused stresses. In response, some 
coastal communities are among the nation’s most proactive in 
adaptation planning (Chapter 25: Coasts). 

Key Message 6: Water Quality Risks to Lakes and Rivers 

Increasing air and water temperatures, more intense precipitation and runoff, and intensifying 
droughts can decrease river and lake water quality in many ways, including increases in 

sediment, nitrogen, and other pollutant loads. 

Water temperature has been increasing in some rivers.80 The 
length of the season that lakes and reservoirs are thermally 
stratified (with separate density layers) is increasing with in-
creased air and water temperatures.81,82 In some cases, sea-
sonal mixing may be eliminated in shallow lakes, decreasing 
dissolved oxygen and leading to excess concentrations of 
nutrients (nitrogen and phosphorous), heavy metals (such as 
mercury), and other toxins in lake waters.81,82 

Lower and more persistent low flows under drought conditions 
as well as higher flows during floods can worsen water quality. 
Increasing precipitation intensity, along with the effects of wild-
fires and fertilizer use, are increasing sediment, nutrient, and 
contaminant loads in surface waters used by downstream wa-
ter users84 and ecosystems. Mineral weathering products, like 
calcium, magnesium, sodium, and silicon and nitrogen loads85 
have been increasing with higher streamflows.86 Changing land 

cover, flood frequencies, and flood magnitudes are expected 
to increase mobilization of sediments in large river basins.87 

Increasing air and water temperatures, more intense precipita tion and 
runoff, and intensifying droughts can decrease water quality in many 
ways. Here, middle school students in Colorado learn about water quality.
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Changes in sediment transport are expected to vary regionally 
and by land-use type, with potentially large increases in some 
areas,88 resulting in alterations to reservoir storage and river 
channels, affecting flooding, navigation, water supply, and 
dredging. Increased frequency and duration of droughts, and 
associated low water levels, increase nutrient concentrations 
and residence times in streams, potentially increasing the like-

lihood of harmful algal blooms and low oxygen conditions.89 
Concerns over such impacts and their potential link to climate 
change are rising for many U.S. regions including the Great 
Lakes,90 Chesapeake Bay,91 and the Gulf of Mexico.85,86 Strat-
egies aiming to reduce sediment, nutrient, and contaminant 
loads at the source remain the most effective management 
responses.92

Relationship between Historical and Projected Water Cycle Changes
Natural climate variations occur on essentially all time scales 
from days to millennia, and the water cycle varies in much the 
same way. Observations of changes in the water cycle over 
time include responses to natural hydroclimatic variability as 
well as other, more local, human influences (like dam build-
ing or land-use changes), or combinations of these influences 
with human-caused climate change. Some recent studies 

have attributed specific observed changes in the water cycle 
to human-induced climate change (for example, Barnett et al. 
200810). For many other water cycle variables and impacts, the 
observed and projected responses are consistent with those 
expected by human-induced climate change and other hu-
man influences. Research aiming to formally attribute these 
responses to their underlying causes is ongoing. 

Figure 3.7. The length of the season in which differences in lake temperatures with depth cause stratification (separate density 
layers) is increasing in many lakes. In this case, measurements show stratification has been increasing in Lake Tahoe (top left) since 
the 1960s and in Lake Superior (top right) since the early 1900s in response to increasing air and surface water temperatures (see 
also Ch. 18: Midwest). In Lake Tahoe, because of its large size (relative to inflow) and resulting long water-residence times, other 
influences on stratification have been largely overwhelmed, and warming air and water temperatures have caused progressive 
declines in near-surface density, leading to longer stratification seasons (by an average of 20 days), decreasing the opportunities 
for deep lake mixing, reducing oxygen levels, and causing impacts to many species and numerous aspects of aquatic ecosytems.83 
Similar effects are observed in Lake Superior,16 where the stratification season is lengthening (top right) and annual ice-covered 
area is declining (bottom); both observed changes are consistent with increasing air and water temperatures.

Observed Changes in Lake Stratification and Ice Covered Area
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Flood Factors and Flood types

A flood is defined as any high flow, overflow, or inundation by water that causes or threatens damage.93 Floods are 
caused or amplified by both weather- and human-related factors. Major weather factors include heavy or prolonged 
precipitation, snowmelt, thunderstorms, storm surges from hurricanes, and ice or debris jams. Human factors in-
clude structural failures of dams and levees, inadequate drainage, and land cover alterations (such as pavement or 
deforestation) that reduce the capacity of the land surface to absorb water. Increasingly, humanity is also adding to 
weather-related factors, as human-induced warming increases heavy downpours, causes more extensive storm surges 
due to sea level rise, and leads to more rapid spring snowmelt.

Worldwide, from 1980 to 2009, floods caused more than 500,000 deaths and affected more than 2.8 billion 
people.94 In the U.S., floods caused 4,586 deaths from 1959 to 200595 while property and crop damage averaged 
nearly $8 billion per year (in 2011 dollars) over 1981 through 2011.93 The risks from future floods are significant, 
given expanded development in coastal areas and floodplains, unabated urbanization, land-use changes, and human-
induced climate change.94  

Major flood types include flash, urban, riverine, and coastal flooding: 

Flash floods occur in small and steep watersheds and waterways 
and can be caused by short-duration intense precipitation, dam 
or levee failure, or collapse of debris and ice jams. Snow cover 
and frozen ground conditions can exacerbate flash flooding dur-
ing winter and early spring by increasing the fraction of precipita-
tion that runs off. Flash floods develop within minutes or hours 
of the causative event, and can result in severe damage and loss 
of life due to high water velocity, heavy debris load, and limited 
warning. Most flood-related deaths in the U.S. are associated 
with flash floods.

Urban flooding can be caused by short-duration very heavy precip-
itation. Urbanization creates large areas of impervious surfaces 
(such as roads, pavement, parking lots, and buildings) and in-
creases immediate runoff. Stormwater drainage removes excess 
surface water as quickly as possible, but heavy downpours can 
exceed the capacity of drains and cause urban flooding. 

Flash floods and urban 
flooding are directly 
linked to heavy precipi-
tation and are expected 
to increase as a result 
of projected increases 
in heavy precipitation 
events. In mountainous 
watersheds, such in-
creases may be partial-
ly offset in winter and 
spring due to projected 
snowpack reduction.

Riverine flooding occurs 
when surface water 
drains from a water-
shed into a stream or 
a river exceeds channel 
capacity, overflows the 

Riverine Flooding: In many regions, infrastructure is currently vulnerable to flooding, as demonstrated 
in these photos. Left: The Fort Calhoun Nuclear Power Plant in eastern Nebraska was surrounded 
by a Missouri River flood on June 8, 2011, that also affected Louisiana, Mississippi, Missouri, Illinois, 
Kentucky, Tennessee, and Arkansas (photo credit: Larry Geiger). Right: The R.M. Clayton sewage 
treatment plant in Atlanta, Georgia, September 23, 2009, was engulfed by floodwaters forcing it to 
shut down and resulting in the discharge of raw sewage into the Chattahoochee River (photo credit: 
Reuters/David Tulis). Flooding also disrupts road and rail transportation, and inland navigation.

Flash Flooding: Cave Creek, Arizona
(Photo credit: Tom McGuire).

Continued
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Climate Change Impacts on Water Resource Uses and Management
People use water for many different purposes and benefits. 
Our water use falls into five main categories: 1) municipal use, 
which includes domestic water for drinking and bathing; 2) ag-
ricultural use, which includes irrigation and cattle operations; 
3) industrial use, which includes electricity production from 
coal- or gas-fired power plants that require water to keep the 
machinery cool; 4) providing ecosystem benefits, such as sup-
porting the water needs of plants and animals we depend on; 
and 5) recreational uses, such as boating and fishing. 

Water is supplied for these many uses from two main sources: 

•	 freshwater withdrawals (from streams, rivers, lakes, 
and aquifers), which supply water for municipal, in-
dustrial, agricultural, and recirculating thermoelectric 
plant cooling water supply;

•	 instream surface water flows, which support hydro-
power production, once-through thermoelectric plant 
cooling, navigation, recreation, and healthy ecosys-
tems. 

Flood Factors and Flood types (continued)
banks, and inundates adjacent low lying areas. Riverine flooding is commonly associated with large watersheds and riv-
ers, while flash and urban flooding occurs in smaller natural or urban watersheds. Because heavy precipitation is often 
localized, riverine flooding typically results from multiple heavy precipitation events over periods of several days, weeks, 
or even months. In large basins, existing soil moisture conditions and evapotranspiration rates also influence the onset 
and severity of flooding, as runoff increases with wetter soil and/or lower evapotranspiration conditions. Snow cover and 
frozen ground conditions can also exacerbate riverine flooding during winter and spring by increasing runoff associated 
with rain-on-snow events and by snowmelt, although these effects may diminish in the long term as snow accumulation 
decreases due to warming. Since riverine flooding depends on precipitation as well as many other factors, projections 
about changes in frequency or intensity are more uncertain than with flash and urban flooding.   

Coastal flooding is predominantly caused by storm surges that accompany hurricanes and other storms. Low storm 
pressure creates strong winds that create and push large sea water domes, often many miles across, toward the shore. 
The approaching domes can raise the water surface above normal tide levels (storm surge) by more than 25 feet, de-
pending on various storm and shoreline factors. 
Inundation, battering waves, and floating debris 
associated with storm surge can cause deaths, 
widespread infrastructure damage (to buildings, 
roads, bridges, marinas, piers, boardwalks, and 
sea walls), and severe beach erosion. Storm-
related rainfall can also cause inland flooding 
(flash, urban, or riverine) if, after landfall, the 
storm moves slowly or stalls over an area. Inland 
flooding can occur close to the shore or hun-
dreds of miles away and is responsible for more 
than half of the deaths associated with tropical 
storms.93 Climate change affects coastal flood-
ing through sea level rise and storm surge, in-
creases in heavy rainfall during hurricanes and 
other storms, and related increases in flooding in 
coastal rivers.

In some locations, early warning systems have helped reduce deaths, although property damage remains considerable 
(Ch. 28: Adaptation).  Further improvements can be made by more effective communication strategies and better land-
use planning.94    

Hurricane Sandy coastal flooding in Mantoloking, N.J.
(Photo credit: New Jersey National Guard/Scott Anema).
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Key Message 7: Changes to Water Demand and Use

Climate change affects water demand and the ways water is used within and across regions 
and economic sectors. The Southwest, Great Plains, and Southeast are  

particularly vulnerable to changes in water supply and demand.

Climate change, acting concurrently with demographic, land-
use, energy generation and use, and socioeconomic changes, is 
challenging existing water management practices by affecting 
water availability and demand and by exacerbating competi-
tion among uses and users (see Ch. 4: Energy; Ch. 6: Agriculture; 
Ch. 10: Energy, Water, and Land; Ch. 12: Indigenous Peoples; 

and Ch. 13: Land Use & Land Cover Change). In some regions, 
these current and expected impacts are hastening efficiency 
improvements in water withdrawal and use, the deployment 
of more proactive water management and adaptation ap-
proaches, and the reassessment of the water infrastructure 
and institutional responses.1

Water Withdrawals
Total freshwater withdrawals (including water that is with-
drawn and consumed as well as water that returns to the origi-
nal source) and consumptive uses have leveled off nationally  

since 1980 at 350 billion gallons of withdrawn water and 100 
billion gallons of consumptive water per day, despite the ad-
dition of 68 million people from 1980 to 2005 (Figure 3.8).96 
Irrigation and all electric power plant cooling withdrawals ac-
count for approximately 77% of total withdrawals, municipal 
and industrial for 20%, and livestock and aquaculture for 3%. 
Most thermoelectric withdrawals are returned back to rivers 
after cooling, while most irrigation withdrawals are consumed 
by the processes of evapotranspiration and plant growth. 
Thus, consumptive water use is dominated by irrigation (81%) 
followed distantly by municipal and industrial (8%) and the re-
maining water uses (5%). See Figure 3.9. 

Water sector withdrawals and uses vary significantly by region. 
There is a notable east-west water use pattern, with the larg-
est regional withdrawals occurring in western states (where 
the climate is drier) for agricultural irrigation (Figure 3.10a,d). 
In the east, water withdrawals mainly serve municipal, indus-
trial, and thermoelectric uses (Figure 3.10a,b,c). Irrigation is 
also dominant along the Mississippi Valley, in Florida, and in 
southeastern Texas. Groundwater withdrawals are especially 
intense in parts of the Southwest, Southeast, Northwest, and Figure 3.8. Trends in total freshwater withdrawal (equal 

to the sum of consumptive use and return flows to rivers) 
and population in the contiguous United States. This 
graph illustrates the remarkable change in the relationship 
between water use and population growth since about 
1980. Reductions in per capita water withdrawals are 
directly related to increases in irrigation efficiency for 
agriculture, more efficient cooling processes in electrical 
generation, and, in many areas, price signals, more 
efficient indoor plumbing fixtures and appliances, and 
reductions in exterior landscape watering, in addition to 
shifts in land-use patterns in some areas.97 Efficiency 
improvements have offset the demands of a growing 
population and have resulted in more flexibility in meeting 
water demand. In some cases these improvements 
have also reduced the flexibility to scale back water use 
in times of drought because some inefficiencies have 
already been removed from the system. With drought 
stress projected to increase in many U.S. regions, drought 
vulnerability is also expected to rise.1

U.S. Freshwater Withdrawal, Consumptive Use,  
and Population Trends

Figure 3.9. Total water withdrawals (groundwater and surface 
water) in the U.S. are dominated by agriculture and energy 
production, though the primary use of water for thermoelectric 
production is for cooling, where water is often returned to lakes 
and rivers after use (return flows). (Data from Kenny et al. 200996)

Freshwater Withdrawals by Sector
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Figure 3.10. Based on the most recent USGS water withdrawal data (2005). This figure illustrates water withdrawals at the U.S. 
county level: (a) total withdrawals (surface and groundwater) in thousands of gallons per day per square mile; (b) municipal and 
industrial (including golf course irrigation) withdrawals as percent of total; (c) irrigation, livestock, and aquaculture withdrawals as 
percent of total; (d) thermoelectric plant cooling withdrawals as percent of total; (e) counties with large surface water withdrawals; 
and (f) counties with large groundwater withdrawals. The largest withdrawals occur in the drier western states for crop irrigation. 
In the east, water withdrawals mainly serve municipal, industrial, and thermoelectric uses. Groundwater withdrawals are intense in 
parts of the Southwest and Northwest, the Great Plains, Mississippi Valley, Florida and South Georgia, and near the Great Lakes 
(Figure source: Georgia Water Resources Institute, Georgia Institute of Technology; Data from Kenny et al. 2009;96 USGS 201398). 

U.S. Water Withdrawal Distribution
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Great Plains, the Mississippi Valley, Florida and South Georgia, 
and near the Great Lakes (Figure 3.10f). Surface waters are 
most intensely used in all other U.S. regions. 

Per capita water withdrawal and use are decreasing due to 
many factors.99 These include demand management, new 
plumbing codes, water-efficient appliances, efficiency im-
provement programs, and pricing strategies, especially in the 
municipal sector.100 Other factors contributing to decreasing 
per capita water use include changes from water-intensive 
manufacturing and other heavy industrial activities to service-
oriented businesses,101 and enhanced water-use efficiencies in 
response to environmental pollution legislation (in the indus-
trial and commercial sector). In addition, replacement of older 
once-through-cooling electric power plants by plants that re-
cycle their cooling water, and switching from flood irrigation to 
more efficient methods in the western United States102 have 
also contributed to these trends. 

Notwithstanding the overall national trends, regional water 
withdrawal and use are strongly correlated with climate;103 
hotter and drier regions tend to have higher per capita usage, 
and water demand is affected by both temperature and pre-
cipitation on a seasonal basis (see also Ch. 28: Adaptation). 

Water demand is projected to increase as population grows, 
and will increase substantially more in some regions as a result 
of climate change. In the absence of climate change but in re-
sponse to a projected population increase of 80% and a 245% 
increase in total personal income from 2005 to 2060, simula-
tions under the A1B scenario indicate that total water demand 
in the U.S. would increase by 3%.99 Under these conditions, 
approximately half of the U.S. regions would experience an 
overall decrease in water demand, while the other half would 
experience an increase (Figure 3.11a). If, however, climate 
change projections based on the A1B emissions scenario (with 
gradual reductions from current emission trends beginning 
around mid-century) and three climate models are also fac-
tored in, the total water demand is projected to rise by an av-
erage of 26% over the same period (Figure 3.11b).99 Under the 
population increase scenario that also includes climate change, 
90% of the country is projected to experience a total demand 
increase, with decreases projected only in parts of the Mid-
west, Northeast and Southeast. Compared to an 8% increase in 
demand under a scenario without climate change, projections 
under the A2 emissions scenario (which assumes continued 
increases in global emissions) and three climate models over 
the 2005 to 2060 period result in a 34% increase in total water 
demand. By 2090, total water demand is projected to increase 
by 42% over 2005 levels under the A1B scenario and 82% under 
the higher A2 emissions scenario. 

Crop irrigation and landscape watering needs are directly af-
fected by climate change, especially by projected changes in 
temperature, potential evapotranspiration, and soil moisture. 
Consequently, the projected climate change impacts on water 
demand are larger in the western states, where irrigation dom-
inates total water withdrawals (see Figure 3.10). Uncertainties 
in the projections of these climate variables also affect water 
demand projections.99 However, it is clear that the impacts of 
projected population, socioeconomic, and climate changes 
amplify the effects on water demand in the Southwest and 
Southeast, where the observed and projected drying water cy-
cle trends already make these regions particularly vulnerable. 

This vulnerability will be exacerbated by physical and opera-
tional limitations of water storage and distribution systems. 
River reservoirs and associated dams are usually designed to 
handle larger-than-historical streamflow variability ranges. 
Some operating rules and procedures reflect historical sea-
sonal and interannual streamflow and water release patterns, 
while others include information about current and near-term 
conditions, such as snowpack depth and expected snowmelt 
volume. Climate change threatens to alter both the streamflow 
variability that these structures must accommodate and their 
opportunities to recover after doing so (due to permanent 
changes in average streamflow). Thus, as streamflow and de-
mand patterns change, historically based operating rules and 
procedures could become less effective in balancing water 
supply with other uses.104

Some of the highest water demand increases under climate 
change are projected in U.S. regions where groundwater aqui-
fers are the main water supply source (Figure 3.11b), including 
the Great Plains and parts of the Southwest and Southeast. 
The projected water demand increases combined with poten-
tially declining recharge rates (see water cycle section) further 
challenge the sustainability of the aquifers in these regions.       

Power plant cooling is a critical national water use, because 
nearly 90% of the U.S. electrical energy is produced by thermo-
electric power plants.105 Freshwater withdrawals per kilowatt 
hour have been falling in recent years due to the gradual re-
placement of once-through cooling of power plant towers with 
plants that recycle cooling water. Thermal plant cooling is prin-
cipally supported by surface water withdrawals (Figure 3.10e,f) 
and has already been affected by climate change in areas 
where temperatures are increasing and surface water supplies 
are diminishing, such as the southern United States. Higher 
water temperatures affect the efficiency of electric generation 
and cooling processes. It also limits the ability of utilities to 
discharge heated water to streams from once-through cooled 
power systems due to regulatory requirements and concerns 
about how the release of warmer water into rivers and streams 
affects ecosystems and biodiversity (see Ch. 4: Energy).106
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Instream Water Uses
Hydropower contributes 7% of electricity generation nation-
wide, but provides up to 70% in the Northwest and 20% in Cali-
fornia, Alaska, and the Northeast.107 Climate change is expect-
ed to affect hydropower directly through changes in runoff 
(average, extremes, and seasonality), and indirectly through 
increased competition with other water uses. Based on runoff 
projections, hydropower is expected to decline in the southern 
U.S. (especially the Southwest) and increase in the Northeast 
and Midwest (though actual gains or losses will depend on 
facility size and changes in runoff volume and timing). Where 
non-power water demands are expected to increase (as in the 
southern U.S.), hydropower generation, dependable capacity, 
and ancillary services are likely to decrease. Many hydropower 
facilities nationwide, especially in the Southeast, Southwest, 
and the Great Plains, are expected to face water availability 
constraints.108 While some hydropower facilities may face wa-
ter-related limitations, these could be offset to some degree 
by the use of more efficient turbines as well as innovative new 
hydropower technologies. 

Inland navigation, most notably in the Great Lakes and the 
Missouri, Mississippi, and Ohio River systems, is particularly 
important for agricultural commodities (transported from the 
Midwest to the Gulf Coast and on to global food markets), coal, 
and iron ore.1,109 Navigation is affected by ice cover and by 
floods and droughts. Seasonal ice cover on the Great Lakes has 
been decreasing16 which may allow increased shipping.110 How-
ever, lake level declines are also possible in the long term, de-
creasing vessel draft and cargo capacity. Future lake levels may 
also depend on non-climate factors and are uncertain both in 
direction and magnitude (see Ch. 2: Our Changing Climate; Ch. 
5: Transportation; and Ch. 18: Midwest). Similarly, although 

the river ice cover period has been decreasing53 (extending 
the inland navigation season), seasonal ice cover changes111,112 
could impede lock operations.112 Intensified floods are likely to 
hinder shipping by causing waterway closures and damaging or 
destroying ports and locks. Droughts have already been shown 
to decrease reliability of flows or channel depth, adversely 
impacting navigation (Ch. 5: Transportation). Both floods and 
droughts can disrupt rail and road traffic and increase shipping 
costs113 and result in commodity price volatility (Ch. 19: Great 
Plains). 

Recreational activities associated with water resources, includ-
ing boating, fishing, swimming, skiing, camping, and wildlife 
watching, are strong regional and national economic drivers.114 
Recreation is sensitive to weather and climate,115 and climate 
change impacts to recreation can be difficult to project.116 Ris-
ing temperatures affect extent of snowcover and mountain 
snowpack, with impacts on skiing117 and snowmobiling.118 As 
the climate warms, changes in precipitation and runoff are 
expected to result in both beneficial (in some regions) and ad-
verse impacts115 to water sports, with potential for consider-
able economic dislocation and job losses.118

Changing climate conditions are projected to affect water and 
wastewater treatment and disposal in ways that depend on 
system-specific and interacting attributes. For example, el-
evated stream temperatures, combined with lower flows, may 
require wastewater facilities to increase treatment to meet 
stream water quality standards.119 More intense precipitation 
and floods, combined with escalating urbanization and associ-
ated increasing impermeable surfaces, may amplify the likeli-
hood of contaminated overland flow or combined sewer over-

Figure 3.11. The effects of climate change, primarily associated with increasing temperatures and potential 
evapotranspiration, are projected to significantly increase water demand across most of the United States. Maps show 
percent change from 2005 to 2060 in projected demand for water assuming (a) change in population and socioeconomic 
conditions based on the underlying A1B emissions scenario, but with no change in climate, and (b) combined changes 
in population, socioeconomic conditions, and climate according to the A1B emissions scenario (gradual reductions from 
current emission trends beginning around mid-century). (Figure source: Brown et al. 201399). 

Projected Changes in Water Withdrawals
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flows.120 Moderate precipitation increases, however, could 
result in increased stream flows, improving capacity to dilute 
contaminants in some regions. Sea level rise and more fre-
quent coastal flooding could damage wastewater utility infra-
structure and reduce treatment efficiency (Ch. 25: Coasts).121

Changes in streamflow temperature and flow regimes can 
affect aquatic ecosystem structure and function (see Ch. 8: 
Ecosystems). Water temperature directly regulates the physi-
ology, metabolism, and energy of individual aquatic organisms, 
as well as entire ecosystems. Streamflow quantity influences 
the extent of available aquatic habitats, and streamflow vari-
ability regulates species abundance and persistence. Flow also 
influences water temperature, sediment, and nutrient con-
centrations.122 If the rate of climate change123 outpaces plant 
and animal species’ ability to adjust to temperature change, 

additional biodiversity loss may occur. Furthermore, climate 
change induced water cycle alterations may exacerbate exist-
ing ecosystem vulnerability, especially in the western United 
States124 where droughts and water shortages are likely to 
increase. But areas projected to receive additional precipita-
tion, such as the northern Great Plains, may benefit. Lastly, hy-
drologic alterations due to human interventions have without 
doubt impaired riverine ecosystems in most U.S. regions and 
globally.125 The projected escalation of water withdrawals and 
uses (see Figure 3.11) threatens to deepen and widen ecosys-
tem impairment, especially in southern states where climate 
change induced water cycle alterations are pointing toward 
drier conditions (see Ch. 8: Ecosystems). In these regions, bal-
ancing socioeconomic and environmental objectives will most 
likely require more deliberate management and institutional 
responses.  

Major Water Resource Vulnerabilities and Challenges 
Many U.S. regions are expected to face increased drought and flood vulnerabilities and exacerbated water management chal-
lenges. This section highlights regions where such issues are expected to be particularly intense. 

Key Message 8: Drought is Affecting Water Supplies  

Changes in precipitation and runoff, combined with changes in consumption and withdrawal, 
have reduced surface and groundwater supplies in many areas. These trends are expected  

to continue, increasing the likelihood of water shortages for many uses. 

Many southwestern and western watersheds, including 
the Colorado, Rio Grande,38,43,126 and Sacramento-San Joa-
quin,127,128 have recently experienced drier conditions. Even 
larger runoff reductions (about 10% to 20%) are projected 
over some of these watersheds in the next 50 years.48,129 In-
creasing evaporative losses, declining runoff and groundwater 
recharge, and changing groundwater pumpage are expected to 
affect surface and groundwater supplies65,66,67,71 and increase 
the risk of water shortages for many water uses. Changes in 

streamflow timing will exacerbate a growing mismatch be-
tween supply and demand (because peak flows are occurring 
earlier in the spring, while demand is highest in mid-summer) 
and will present challenges for the management of reservoirs, 
aquifers, and other water infrastructure.130 Rising stream 
temperatures and longer low flow periods may make electric 
power plant cooling water withdrawals unreliable, and may 
affect aquatic and riparian ecosystems by degrading habitats 
and favoring invasive, non-native species.131 

Key Message 9: Flood Effects on People and Communities

Increasing flooding risk affects human safety and health, property, infrastructure,  
economies, and ecology in many basins across the U.S.

Flooding affects critical water, wastewater, power, transporta-
tion, and communications infrastructure in ways that are dif-
ficult to foresee and can result in interconnected and cascad-
ing failures (see “Flood Factors and Flood Types”). Very heavy 
precipitation events have intensified in recent decades in most 
U.S. regions, and this trend is projected to continue (Ch. 2: Our 
Changing Climate). Increasing heavy precipitation is an impor-
tant contributing factor, but flood magnitude changes also de-
pend on specific watershed conditions (including soil moisture, 
impervious area, and other human-caused alterations). 

Projected changes in flood frequency based on climate projec-
tions and hydrologic models have recently begun to emerge 

(for example, Das et al. 2012;60 Brekke et al. 2009;132 Raff et 
al. 2009;133 Shaw and Riha 2011;134 Walker et al. 2011135), and 
suggest that flood frequency and severity increases may occur 
in the Northeast and Midwest (Ch. 16: Northeast; Ch. 18: Mid-
west). Flooding and sea water intrusion from sea level rise and 
increasing storm surge threaten New York, Boston, Philadel-
phia, Virginia Beach, Wilmington, Charleston, Miami, Tampa, 
Naples, Mobile, Houston, New Orleans, and many other cities 
on U.S. coasts (Chapter 25: Coasts). 

The devastating toll of large floods (human life, property, envi-
ronment, and infrastructure) suggests that proactive manage-
ment measures could minimize changing future flood risks and 
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consequences (Ch. 28: Adaptation). In coastal areas, sea level 
rise may act in parallel with inland climate changes to intensify 
water-use impacts and challenges (Ch. 12: Indigenous Peoples; 
Ch. 17: Southeast).136 Increasing flooding risk, both coastal and 
inland, could also exacerbate human health risks associated 
with failure of critical infrastructure,137,138 and an increase in 
both waterborne diseases (Ch. 9: Human Health)139 and air-
borne diseases.140 

Changes in land use, land cover, development, and population 
distribution can all affect flood frequency and intensity. The na-
ture and extent of these projected changes results in increased 
uncertainty and decreased accuracy of flood forecasting in 
both the short term133 and long term.141 This lack of certainty 
could hinder effective preparedness (such as evacuation plan-
ning) and the effectiveness of structural and non-structural 
flood risk reduction measures. However, many climate change 

projections are robust (Ch. 2: Our Changing Climate), and the 
long lead time needed for the planning, design, and construc-
tion of critical infrastructure that provides resilience to floods 
means that consideration of long-term changes is needed.

Effective climate change adaptation planning requires an in-
tegrated approach45,118,142 that addresses public health and 
safety issues (Ch. 28: Adaptation).143 Though numerous flood 
risk reduction measures are possible, including levees, land-
use zoning, flood insurance, and restoration of natural flood-
plain retention capacity,144 economic and institutional condi-
tions may constrain implementation. The effective use of 
these measures would require significant investment in many 
cases,145 as well as updating policies and methods to account 
for climate change42,146 in the planning, design, operation, and 
maintenance of flood risk reduction infrastructure.132,147  

Adaptation and Institutional Responses 

Key Message 10: Water Resources Management

In most U.S. regions, water resources managers and planners will encounter new risks, 
vulnerabilities, and opportunities that may not be properly managed within existing practices. 

Water managers and planners strive to balance water supply 
and demand across all water uses and users. The management 
process involves complex tradeoffs among water-use benefits, 
consequences, and risks. By altering water availability and 
demand, climate change is likely to present additional man-
agement challenges. One example is in the Sacramento-San 
Joaquin River Delta, where flooding, sea water intrusion, and 
changing needs for environmental, municipal, and agricultural 
water uses have created significant management challenges. 
This California Bay-Delta experience suggests that manag-
ing risks and sharing benefits requires re-assessment of very 
complex ecosystems, infrastructure systems, water rights, 
stakeholder preferences, and reservoir operation strategies – 
as well as significant investments. All of these considerations 
are subject to large uncertainties.54,148 To some extent, all U.S. 
regions are susceptible, but the Southeast and Southwest 
are highly vulnerable because climate change is projected to 
reduce water availability, increase demand, and exacerbate 
shortages (see “Water Management”). 

Recent assessments illustrate water management challenges 
facing California,127,129,149,150 the Southwest,130,151 Southeast (Ch. 

17: Southeast),136,152 Northwest,153 Great Plains,154 and Great 
Lakes.155 A number of these assessments demonstrate that 
while expanding supplies and storage may still be possible 
in some regions, effective climate adaptation strategies can 
benefit from innovative management strategies. These strate-
gies can include domestic water conservation programs that 
use pricing incentives to curb use; more flexible, risk-based, 
better-informed, and adaptive operating rules for reservoirs; 
the integrated use of combined surface and groundwater re-
sources; and better monitoring and assessment of statewide 
water use.129,149,156,157 Water management and planning would 
benefit from better coordination among public sectors at the 
national, state, and local levels (including regional partnerships 
and agreements), and the private sector, with participation of 
all relevant stakeholders in well-informed, fair, and equitable 
decision-making processes. Better coordination among hy-
drologists and atmospheric scientists, and among these scien-
tists and the professional water management community, is 
also needed to facilitate more effective translation of knowl-
edge from science to practice (Ch. 26: Decision Support; Ch. 
28: Adaptation).158
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Water challenges in a southeast river basin

Figure 3.12. The Apalachicola-Chattahoochee-Flint (ACF) River Basin supports many water uses and users, including municipal, 
industrial, and agricultural water supply; flood management; hydroelectric and thermoelectric energy generation; recreation; 
navigation; fisheries; and a rich diversity of environmental and ecological resources. In recent decades, water demands have risen 
rapidly in the Upper Chattahoochee River (due to urban growth) and Lower Chattahoochee and Flint Rivers (due to expansion 
of irrigated agriculture). At the same time, basin precipitation, soil moisture, and runoff are declining, creating challenging water 
sharing tradeoffs for the basin stakeholders.159 The historical water demand and supply trends are expected to continue in the 
coming decades. Climate assessments for 50 historical (1960-2009) and future years (2050-2099) based on a scenario of 
continued increases in emissions (A2) for the Seminole and all other ACF sub-basins152 show that soil moisture is projected to 
continue to decline in all months, especially during the crop growing season from April to October (bottom right). Mean monthly 
runoff decreases (up to 20%, not shown) are also projected throughout the year and especially during the wet season from 
November to May. The projected soil moisture and runoff shifts are even more significant in the extreme values of the respective 
distributions. In addition to reduced supplies, these projections imply higher water demands in the agricultural and other sectors, 
exacerbating management challenges. These challenges are reflected in the projected response of Lake Lanier, the main ACF 
regulation project, the levels of which are projected (for 2050-2099) to be lower, by as much as 15 feet, than its historical (1960-
2009) levels, particularly during droughts (top right). Recognizing these critical management challenges, the ACF stakeholders 
are earnestly working to develop a sustainable and equitable management plan that balances economic, ecological, and social 
values.160 (Figure source: Georgia Water Resources Institute, Georgia Institute of Technology.152).
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Key Message 11: Adaptation Opportunities and Challenges

Increasing resilience and enhancing adaptive capacity provide opportunities to  
strengthen water resources management and plan for climate change impacts.  

Many institutional, scientific, economic, and political barriers present  
challenges to implementing adaptive strategies. 

Climate adaptation involves both addressing the risks and le-
veraging the opportunities that may arise as a result of the cli-
mate impacts on the water cycle and water resources. Efforts 
to increase resiliency and enhance adaptive capacity may cre-
ate opportunities for a wide-ranging public discussion of water 
demands, improved collaboration around water use, increased 
public support for scientific and economic information, and 
the deployment of new technologies supporting adaptation. In 
addition, adaptation can promote the achievement of multiple 
water resource objectives through improved infrastructure 
planning, integrated regulation, and planning and manage-
ment approaches at regional, watershed, or ecosystem scales. 
Pursuing these opportunities may require assessing how cur-
rent institutional approaches support adaptation in light of the 
anticipated impacts of climate change.161

Climate change will stress the nation’s aging water infrastruc-
ture to varying degrees by location and over time. Much of 
the country’s current drainage infrastructure is already over-
whelmed during heavy precipitation and high runoff events, 
an impact that is projected to be exacerbated as a result of 
climate change, land-use change, and other factors. Large per-
centage increases in combined sewage overflow volumes, as-
sociated with increased intensity of precipitation events, have 
been projected for selected watersheds by the end of this 
century in the absence of adaptive measures.106,162 Infrastruc-
ture planning, especially for the long planning and operation 
horizons often associated with water resources infrastructure, 
can be improved by incorporating climate change as a factor 
in new design standards and in asset management and reha-
bilitation of critical and aging facilities, emphasizing flexibility, 
redundancy, and resiliency.106,132,163 

Adaptation strategies for water infrastructure include structur-
al and non-structural approaches. These may include changes 
in system operations and/or demand management changes, 
adopting water conserving plumbing codes, and improving 
flood forecasts, telecommunications, and early warning sys-
tems164 that focus on both adapting physical structures and 
innovative management.106,132,165 Such strategies could take 
advantage of conventional (“gray”) infrastructure upgrades 
(like raising flood control levees); adjustments to reservoir op-
erating rules; new demand management and incentive strate-
gies; land-use management that enhances adaptive capacity; 
protection and restoration at the scale of river basins, water-
sheds, and ecosystems; hybrid strategies that blend “green” 
infrastructure with gray infrastructure; and pricing strate-
gies.1,106,132,166,167 Green infrastructure approaches that are 

increasingly being implemented by municipalities across the 
country include green roofs, rain gardens, roadside plantings, 
porous pavement, and rainwater harvesting (Ch. 28: Adapta-
tion). These techniques typically utilize soils and vegetation 
in the built environment to absorb runoff close to where it 
falls, limiting flooding and sewer backups.168 There are numer-
ous non-infrastructure related adaptation strategies, some of 
which could include promoting drought-resistant crops, flood 
insurance reform, and building densely developed areas away 
from highly vulnerable areas.

In addition to physical adaptation, capacity-building activities 
can build knowledge and enhance communication and collabo-
ration within and across sectors.1,167,169  In particular, building 
networks, partnerships, and support systems has been iden-
tified as a major asset in building adaptive capacity (Ch. 26: 
Decision Support; Ch. 28: Adaptation).170

In addition to stressing the physical infrastructure of water 
systems, future impacts of climate change may reveal the 
weaknesses in existing water law regimes to accommodate 
novel and dynamic water management conditions. The basic 
paradigms of environmental and natural resources law are 
preservation and restoration, both of which are based on the 
assumption that natural systems fluctuate within an unchang-
ing envelope of variability (“stationarity”).171 However, climate 
change is now projected to affect water supplies during the 
multi-decade lifetime of major water infrastructure projects in 
wide-ranging and pervasive ways.132 Under these circumstanc-
es, stationarity will no longer be reliable as the central assump-
tion in water-resource risk assessment and planning.42,171 For 
example, in the future, water rights administrators may find it 
necessary to develop more flexible water rights systems con-
ditioned to address the uncertain impacts of climate change.172 
Agencies and courts may seek added flexibility in regulations 
and laws to achieve the highest and best uses of limited water 
resources and to enhance water management capacity in the 
context of new and dynamic conditions.132,173 

In the past few years, many federal, state, and local agen-
cies and tribal governments have begun to address climate 
change adaptation, integrating it into existing decision-mak-
ing, planning, or infrastructure-improvement processes (Ch. 
28: Adaptation).43,174 Drinking water utilities are increasingly 
utilizing climate information to prepare assessments of their 
supplies,175 and utility associations and alliances, such as the 
Water Research Foundation and Water Utility Climate Alliance, 
have undertaken original research to better understand the 
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implications of climate change on behalf of some of the largest 
municipal water utilities in the United States.119,156,176

The economic, social, and environmental implications of cli-
mate change induced water cycle changes are very significant, 
as is the cost of inaction. Adaptation responses need to address 
considerable uncertainties in the short-, medium-, and long-
term; be proactive, integrated, and iterative; and be developed 
through well-informed stakeholder decision processes func-
tioning within a flexible institutional and legal environment. 
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3: WATER RESOURCES

Process for Developing Key Messages: 
The chapter author team engaged in multiple technical discussions 
via teleconferences from March – June 2012. These discussions fol-
lowed a thorough review of the literature, which included an inter-
agency prepared foundational document,1 over 500 technical inputs 
provided by the public, as well as other published literature. The au-
thor team met in Seattle, Washington, in May 2012 for expert delib-
eration of draft key messages by the authors wherein each message 
was defended before the entire author team before this key message 
was selected for inclusion in the Chapter. These discussions were sup-
ported by targeted consultation with additional experts by the lead 
author of each message, and they were based on criteria that help 
define “key vulnerabilities.” Key messages were further refined fol-
lowing input from the NCADAC report integration team and authors 
of Ch. 2: Our Changing Climate.

Key message #1 Traceable accounT

Annual precipitation and river-flow increases are 
observed now in the Midwest and the Northeast 
regions. Very heavy precipitation events have in-
creased nationally and are projected to increase in 
all regions. The length of dry spells is projected to 
increase in most areas, especially the southern and 
northwestern portions of the contiguous United 
States.  

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 2: Our Changing Climate, Ch. 20: Southwest, other 
technical input reports,2 and over 500 technical inputs on a wide 
range of topics that were received as part of the Federal Register No-
tice solicitation for public input.

Numerous peer-reviewed publications describe precipitation trends 
(Ch. 2: Our Changing Climate)4,7,8,34 and river-flow trends.13,41 As dis-
cussed in Chapter 2, the majority of projections available from cli-
mate models (for example, Orlowsky and Seneviratne 2012;3 Kharin 
et al. 20135) indicate small projected changes in total average annual 
precipitation in many areas, while heavy precipitation6 and the length 
of dry spells are projected to increase across the entire country. Pro-
jected precipitation responses (such as changing extremes) to in-
creasing greenhouse gases are robust in a wide variety of models and 
depictions of climate.

The broad observed trends of precipitation and river-flow increases 
have been identified by many long-term National Weather Service 
(NWS)/National Climatic Data Center (NCDC) weather monitoring 
networks, USGS streamflow monitoring networks, and analyses of 
records therefrom (Ch. 2: Our Changing Climate;34,36,37). Ensembles 
of climate models3,42(see also Ch. 2: Our Changing Climate, Ch. 20: 
Southwest) are the basis for the reported projections. 

New information and remaining uncertainties
Important new evidence (cited above) confirmed many of the find-
ings from the 2009 National Climate Assessment.177

 

Observed trends: Precipitation trends are generally embedded 
amidst large year-to-year natural variations and thus trends may be 
difficult to detect, may differ from site to site, and may be reflections 
of multi-decadal variations rather than external (human) forcings. 
Consequently, careful analyses of longest-term records from many 
stations across the country and addressing multiple potential expla-
nations are required and are cornerstones of the evidentiary studies 
described above. 

Efforts are underway to continually improve the stability, placement, 
and numbers of weather observations needed to document trends; 
scientists also regularly search for other previously unanalyzed data 
sources for use in testing these findings. 

Projected trends: The complexity of physical processes that result 
in precipitation and runoff reduces abilities to represent or predict 
them as accurately as would be desired and with the spatial and tem-
poral resolution required for many applications; however, as noted, 
the trends at the scale depicted in this message are very robust 
among a wide variety of climate models and projections, which lends 
confidence that the projections are appropriate lessons from current 
climate (and streamflow) models. Nonetheless, other influences not 
included in the climate change projections might influence future 
patterns of precipitation and runoff, including changes in land cover, 
water use (by humans and vegetation), and streamflow management.

Climate models used to make projections of future trends are con-
tinually increasing in number, resolution, and in the number of ad-
ditional external and internal influences that might be confounding 
current projections. For example, much more of all three of these 

SUPPLEMENTAL MATERIAL
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directions for improvement are already evident in projection archives 
for the next IPCC assessment. 

Assessment of confidence based on evidence 
Observed trends have been demonstrated by a broad range of meth-
ods over the past 20+ years based on best available data; projected 
precipitation and river-flow responses to greenhouse gas increases 
are robust across large majorities of available climate (and hydro-
logic) models from scientific teams around the world.

Confidence is therefore judged to be high that annual precipitation 
and river-flow increases are observed now in the Midwest and the 
Northeast regions. 

Confidence is high that very heavy precipitation events have in-
creased nationally and are projected to increase in all regions. 

Confidence is high that the length of dry spells is projected to increase 
in most areas, especially the southern and northwestern portions of 
the contiguous United States.

Key message #2 Traceable accounT

Short-term (seasonal or shorter) droughts are ex-
pected to intensify in most U.S. regions. Longer-
term droughts are expected to intensify in  large 
areas of the Southwest, southern Great Plains, and 
Southeast.

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 16: Northeast, Ch 17: Southeast, Ch. 2: Our Chang-
ing Climate, Ch. 18: Midwest, Ch. 19: Great Plains, Ch. 20: Southwest, 
Ch. 21: Northwest, Ch. 23: Hawai‘i and Pacific Islands, and over 500 
technical inputs on a wide range of topics that were received as part 
of the Federal Register Notice solicitation for public input.

Projected drought trends derive directly from climate models in some 
studies (for example, Hoerling et al. 2012;8 Wehner et al. 2011;30 Gao 
et al. 2012;32 Gao et al. 2011;33), from hydrologic models responding 
to projected climate trends in others (for example, Georgakakos and 
Zhang 2011;38 Cayan et al. 2010;48), from considerations of the inter-
actions between precipitation deficits and either warmer or cooler 
temperatures in historical (observed) droughts,48 and from combina-
tions of these approaches (for example, Trenberth et al. 200449) in 
still other studies. 

New information and remaining uncertainties
Important new evidence (cited above) confirmed many of the find-
ings from the 2009 National Climate Assessment.177

Warmer temperatures are robustly projected by essentially all cli-
mate models, with what are generally expected to be directly atten-
dant increases in the potentials for greater evapotranspiration, or ET 
(although it is possible that current estimates of future ET are overly 
influenced by temperatures at the expense of other climate variables, 
like wind speed, humidity, net surface radiation, and soil moisture 
that might change in ways that could partly ameliorate rising ET de-
mands). As a consequence, there is a widespread expectation that 
more water from precipitation will be evaporated or transpired in 
the warmer future, so that except in regions where precipitation in-
creases more than ET increases, less overall water will remain on the 
landscape and droughts will intensify and become more common. 
Another widespread expectation is that precipitation variability will 
increase, which may result in larger swings in moisture availability, 
with swings towards the deficit side resulting in increased frequen-
cies and intensities of drought conditions on seasonal time scales 
to times scales of multiple decades. An important remaining uncer-
tainty, discussed in the supporting text for Key Message #1, is the 
extent to which the types of models used to project future droughts 
may be influencing results with a notable recent tendency for studies 
with more complete, more resolved land-surface models, as well as 
climate models, to yield more moderate projected changes.

Confidence Level
Very High

Strong evidence (established 
theory, multiple sources, consistent 

results, well documented and 
accepted methods, etc.), high 

consensus

High

Moderate evidence (several sourc-
es, some consistency, methods 

vary and/or documentation limited, 
etc.), medium consensus

Medium

Suggestive evidence (a few 
sources, limited consistency, mod-
els incomplete, methods emerging, 
etc.), competing schools of thought

Low

Inconclusive evidence (limited 
sources, extrapolations, inconsis-
tent findings, poor documentation 
and/or methods not tested, etc.), 
disagreement or lack of opinions 

among experts
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Other uncertainties derive from the possibility that changes in other 
variables or influences of CO2-fertilization and/or land cover change 
may also partly ameliorate drought intensification. Furthermore in 
many parts of the country, El Niño-Southern Oscillation (and other 
oceanic) influences on droughts and floods are large, and can over-
whelm climate change effects during the next few decades. At pres-
ent, however, the future of these oceanic climate influences remains 
uncertain. 

Assessment of confidence based on evidence 
Given the evidence base and remaining uncertainties: 

Confidence is judged to be medium-high that short-term (seasonal or 
shorter) droughts are expected to intensify in most U.S. regions. Con-
fidence is high that longer-term droughts are expected to intensify in 
large areas of the Southwest, southern Great Plains, and Southeast. 

Key message #3 Traceable accounT

Flooding may intensify in many U.S. regions, even 
in areas where total precipitation is projected to de-
cline. 

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 16: Northeast, Ch 17: Southeast, Ch. 2: Our Chang-
ing Climate, Ch. 18: Midwest, Ch. 19: Great Plains, Ch. 20: Southwest, 
Ch. 21: Northwest, Ch. 23: Hawai‘i and Pacific Islands, and over 500 
technical inputs on a wide range of topics that were received as part 
of the Federal Register Notice solicitation for public input.

The principal observational bases for the key message are careful 
national-scale flood-trend analyses58 based on annual peak-flow re-
cords from a selection of 200 USGS streamflow gaging stations mea-
suring flows from catchments that are minimally influenced by up-
stream water uses, diversions, impoundments, or land-use changes 
with more than 85 years of records, and analyses of two other subsets 
of USGS gages with long records (including gages both impacted by 
human activities and less so), including one analysis of 50 gages na-
tionwide56 and a second analysis of 572 gages in the eastern United 
States.57 There is some correspondence among regions with signifi-
cant changes in annual precipitation (Ch. 2: Our Changing Climate) 
and soil moisture (Figures 3.2 and 3.3), and annual flood magnitudes 
(Figure 3.5).58

Projections of future flood-frequency changes result from de-
tailed hydrologic models (for example, Das et al. 2012;60 Raff et al. 
2009;133Walker et al. 2011135) of rivers that simulate responses to 
projected precipitation and temperature changes from climate mod-
els; such simulations have only recently begun to emerge in the peer-
reviewed literature.

New information and remaining uncertainties
Important new evidence (cited above) confirmed many of the find-
ings from the 2009 National Climate Assessment.177 

Large uncertainties remain in efforts to detect flood-statistic changes 
attributable to climate change, because a wide range of local factors 
(such as dams, land-use changes, river channelization) also affect 
flood regimes and can mask, or proxy for, climate change induced 
alterations. Furthermore, it is especially difficult to detect any kinds 
of trends in what are, by definition, rare and extreme events. Finally, 
the response of floods to climate changes are expected to be fairly 
idiosyncratic from basin to basin, because of the strong influences 
of within-storm variations and local, basin-scale topographic, soil 
and vegetation, and river network characteristics that influence the 
size and extent of flooding associated with any given storm or sea-
son.54,55,56,57 

Large uncertainties still exist as to how well climate models can rep-
resent and project future extremes of precipitation. This has – until 
recently – limited attempts to make specific projections of future 
flood frequencies by using climate model outputs directly or as direct 
inputs to hydrologic models. However, precipitation extremes are ex-
pected to intensify as the atmosphere warms, and many floods result 
from larger portions of catchment areas receiving rain as snowlines 
recede upward. As rain runs off more quickly than snowfall this re-
sults in increased flood potential; furthermore, occasional rain-on-
snow events exacerbates this effect. This trend is broadly expected to 
increase in frequency under general warming trends, particularly in 
mountainous catchments.62 Rising sea levels and projected increase 
in hurricane-associated storm intensity and rainfall rates provide 
first-principles bases for expecting intensified flood regimes in coast-
al settings (see Ch. 2: Our Changing Climate).

Assessment of confidence based on evidence 
Future changes in flood frequencies and intensities will depend on a 
complex combination of local to regional climatic influences, and the 
details of complex surface-hydrologic conditions in each catchment 
(for example, topography, land cover, and upstream management). 
Consequently, flood frequency changes may be neither simple nor 
regionally homogeneous, and basin by basin projections may need to 
be developed. Early results now appearing in the literature have most 
often projected intensifications of flood regimes, in large part as re-
sponses to projections of more intense storms and increasingly rainy 
(rather than snowy) storms in previously snow-dominated settings. 
Confidence in current estimates of future changes in flood frequen-
cies and intensities is overall judged to be low.

Key message #4 Traceable accounT

Climate change is expected to affect water de-
mand, groundwater withdrawals, and aquifer re-
charge, reducing groundwater availability in some 
areas. 
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Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 regional chapters of the NCA, and over 500 technical 
inputs on a wide range of topics that were received as part of the 
Federal Register Notice solicitation for public input.

Several recent studies65,66,67,68,71,72 have evaluated the potential im-
pacts of changes in groundwater use and recharge under scenarios 
including climate change, and generally they have illustrated the com-
mon-sense conclusion that changes in pumpage can have immediate 
and significant effects in the nation’s aquifers. This has certainly been 
the historical experience in most aquifers that have seen significant 
development; pumpage variations usually tend to yield more imme-
diate and often larger changes on many aquifers than do historical 
climate variations on time scales from years to decades. Meanwhile, 
for aquifers in the Southwest, there is a growing literature of geo-
chemical studies that fingerprint various properties of groundwater 
and that are demonstrating that most western groundwater derives 
preferentially from snowmelt, rather than rainfall or other sourc-
es.50,51,66,74 This finding suggests that much western recharge may be 
at risk of changes and disruptions from projected losses of snowpack, 
but as yet provides relatively little indication whether the net effects 
will be recharge declines, increases, or simply spatial redistribution.

New information and remaining uncertainties
The precise responses of groundwater storage and flow to climate 
change are not well understood, but recent and ongoing studies 
provide insights on underlying mechanisms.65,66,67 The observations 
and modeling evidence to make projections of future responses of 
groundwater recharge and discharge to climate change are thus far 
very limited, primarily because of limitations in data availability and 
in the models themselves. New forms and networks of observations 
and new modeling approaches and tools are needed to provide pro-
jections of the likely influences of climate changes on groundwater 
recharge and discharge. Despite the uncertainties about the specif-
ics of climate change impacts on groundwater, impacts of reduced 
groundwater supply and quality would likely be detrimental to the 
nation.

Assessment of confidence based on evidence
Given the evidence base and remaining uncertainties, confidence 
is judged to be high that climate change is expected to affect water 
demand, groundwater withdrawals, and aquifer recharge, reducing 
groundwater availability in some areas. 

Key message #5 Traceable accounT

Sea level rise, storms and storm surges, and 
changes in surface and groundwater use patterns 
are expected to compromise the sustainability of 
coastal freshwater aquifers and wetlands.

Description of evidence base
This message has a strong theoretical and observational basis, in-

cluding considerable historical experience with seawater intrusion 
into many of the nation’s coastal aquifers and wetlands under the 
influence of heavy pumpage, some experience with the influences 
of droughts and storms on seawater intrusion, and experience with 
seepage of seawater into shallow coastal aquifers under storm and 
storm surge conditions that lead to coastal inundations with seawa-
ter. The likely influences of sea level rise on seawater intrusion into 
coastal (and island) aquifers and wetlands are somewhat less certain, 
as discussed below, although it is projected that sea level rise may 
increase opportunities for saltwater intrusion (see Ch. 25: Coasts).

New information and remaining uncertainties
There are few published studies describing the kinds of groundwater 
quality and flow modeling that are necessary to assess the real-world 
potentials for sea level rise to affect seawater intrusion.78 Studies in 
the literature and historical experience demonstrate the detrimental 
impacts of alterations to the water budgets of the freshwater lenses 
in coastal aquifers and wetlands around the world (most often by 
groundwater development), but few evaluate the impacts of sea level 
rise alone. More studies with real-world aquifer geometries and de-
velopment regimes are needed to reduce the current uncertainty of 
the potential interactions of sea level rise and seawater intrusion. 

Assessment of confidence based on evidence 
Confidence is high that sea level rise, storms and storm surges, and 
changes in surface and groundwater use patterns are expected to 
compromise the sustainability of coastal freshwater aquifers and 
wetlands. 

Key message #6 Traceable accounT

Increasing air and water temperatures, more in-
tense precipitation and runoff, and intensifying 
droughts can decrease river and lake water qual-
ity in many ways, including increases in sediment, 
nitrogen, and other pollutant loads.

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational doc-
ument,1 Ch. 8: Ecosystems, Ch. 15: Biogeochemical Cycles, and over 
500 technical inputs on a wide range of topics that were reviewed as 
part of the Federal Register Notice solicitation for public input.

Thermal stratification of deep lakes and reservoirs has been observed 
to increase with increased air and water temperatures,1,81,82 and may 
be eliminated in shallow lakes. Increased stratification reduces mix-
ing, resulting in reduced oxygen in bottom waters. Deeper set-up of 
vertical thermal stratification in lakes and reservoirs may reduce or 
eliminate a bottom cold water zone; this, coupled with lower oxygen 
concentration, results in a degraded aquatic ecosystem. 

Major precipitation events and resultant water flows increase wa-
tershed pollutant scour and thus increase pollutant loads.84 Fluxes 
of mineral weathering products (for example, calcium, magnesium, 
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sodium, and silicon) have also been shown to increase in response 
to higher discharge.86 In the Mississippi drainage basin, increased 
precipitation has resulted in increased nitrogen loads contributing 
to hypoxia in the Gulf of Mexico.85 Models predict and observations 
confirm that continued warming will have increasingly negative ef-
fects on lake water quality and ecosystem health.81 

Future re-mobilization of sediment stored in large river basins will be 
influenced by changes in flood frequencies and magnitudes, as well as 
on vegetation changes in the context of climate and other anthropo-
genic factors.87 Model projections suggest that changes in sediment 
delivery will vary regionally and by land-use type, but on average 
could increase by 25% to 55%.88

New information and remaining uncertainties
It is unclear whether increasing floods and droughts cancel each 
other out with respect to long-term pollutant loads. 

It is also uncertain whether the absolute temperature differential 
with depth will remain constant, even with overall lake and reservoir 
water temperature increases. Further, it is uncertain if greater mixing 
with depth will eliminate thermal stratification in shallow, previously 
stratified lakes. Although recent studies of Lake Tahoe provide an ex-
ample of longer stratification seasons,83 lakes in other settings and 
with other geometries may not exhibit the same response. 

Many factors influence stream water temperature, including air tem-
perature, forest canopy cover, and ratio of baseflow to streamflow. 

Assessment of confidence based on evidence 
Given the evidence base, confidence is medium that increasing air 
and water temperatures, more intense precipitation and runoff, and 
intensifying droughts can decrease river and lake water quality in 
many ways, including increases in sediment, nitrogen, and pollutant 
loads.

Key message #7 Traceable accounT

Climate change affects water demand and the 
ways water is used within and across regions and 
economic sectors. The Southwest, Great Plains, 
and Southeast are particularly vulnerable to chang-
es in water supply and demand.

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 2: Our Changing Climate, Ch. 17: Southeast, Ch. 19: 
Great Plains, Ch. 20: Southwest, Ch. 23: Hawai‘i and Pacific Islands, 
and many technical inputs on a wide range of topics that were re-
ceived and reviewed as part of the Federal Register Notice solicitation 
for public input.

Observed Trends: Historical water withdrawals by sector (for ex-
ample, municipal, industrial, agricultural, and thermoelectric) have 

been monitored and documented by USGS for over 40 years and 
represent a credible database to assess water-use trends, efficien-
cies, and underlying drivers. Water-use drivers principally include 
population, personal income, electricity consumption, irrigated area, 
mean annual temperature, growing season precipitation, and grow-
ing season potential evapotranspiration.99 Water-use efficiencies 
are also affected by many non-climate factors, including demand 
management, plumbing codes, water efficient appliances, efficiency 
improvement programs, and pricing strategies;100 changes from wa-
ter intensive manufacturing and other heavy industrial activities to 
service-oriented businesses,101 and enhanced water-use efficiencies 
in response to environmental pollution legislation; replacement of 
older once-through-cooling electric power plants by plants that re-
cycle their cooling water; and switching from flood irrigation to more 
efficient methods in the western United States.102  

Projected Trends and Consequences: Future projections have been 
carried out with and without climate change to first assess the wa-
ter demand impacts of projected population and socioeconomic 
increases, and subsequently combine them with climate change in-
duced impacts. The main findings are that in the absence of climate 
change total water withdrawals in the U.S. will increase by 3% in the 
coming 50 years,99 with approximately half of the U.S. experiencing 
a total water demand decrease and half an increase. If, however, cli-
mate change projections are also factored in, the demand for total 
water withdrawals is projected to rise by an average of 26%,99 with 
more than 90% of the U.S. projected to experience a total demand in-
crease, and decreases projected only in parts of the Midwest, North-
east, and Southeast. When coupled with the observed and projected 
drying water cycle trends (see key messages in “Climate Change Im-
pacts on the Water Cycle” section), the water demand impacts of pro-
jected population, socioeconomic, and climate changes intensify and 
compound in the Southwest and Southeast, rendering these regions 
particularly vulnerable in the coming decades. 

New information and remaining uncertainties
The studies of water demand in response to climate change and other 
stressors are very recent and constitute new information on their 
own merit.99 In addition, for the first time, these studies make it pos-
sible to piece together the regional implications of climate change in-
duced water cycle alterations in combination with projected changes 
in water demand. Such integrated assessments also constitute new 
information and knowledge building. 

Demand projections include various uncertain assumptions which 
become increasingly important in longer term (multi-decadal) pro-
jections. Because irrigation demand is the largest water demand 
component most sensitive to climate change, the most important 
climate-related uncertainties are precipitation and potential evapo-
transpiration over the growing season. Non-climatic uncertainties 
relate to future population distribution, socioeconomic changes, and 
water-use efficiency improvements.     
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Assessment of confidence based on evidence 
Considering that (a) droughts are projected to intensify in large ar-
eas of the Southwest, Great Plains, and the Southeast, and (b) that 
these same regions have experienced and are projected to experi-
ence continuing population and demand increases, confidence that 
these regions will become increasingly vulnerable to climate change 
is judged to be high.

Key message #8 Traceable accounT

Changes in precipitation and runoff, combined 
with changes in consumption and withdrawal, have 
reduced surface and groundwater supplies in many 
areas. These trends are expected to continue, in-
creasing the likelihood of water shortages for many 
uses. 

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 2: Our Changing Climate, Ch. 17: Southeast, Ch. 19: 
Great Plains, Ch. 20: Southwest, Ch. 23: Hawai‘i and Pacific Islands, 
and over 500 technical inputs on a wide range of topics that were 
received and reviewed as part of the Federal Register Notice solicita-
tion for public input.

Observed Trends: Observations suggest that the water cycle in the 
Southwest, Great Plains, and Southeast has been changing toward 
drier conditions (Ch. 17: Southeast).130,151,152 Furthermore, paleocli-
mate tree-ring reconstructions indicate that drought in previous cen-
turies has been more intense and of longer duration than the most 
extreme drought of the 20th and 21st centuries.40

Projected Trends and Consequences: Global Climate Model (GCM) 
projections indicate that this trend is likely to persist, with runoff 
reductions (in the range of 10% to 20% over the next 50 years) and 
intensifying droughts.48

The drying water cycle is expected to affect all human and ecologi-
cal water uses, especially in the Southwest. Decreasing precipitation, 
rising temperatures, and drying soils are projected to increase irriga-
tion and outdoor watering demand (which account for nearly 90% 
of consumptive water use) by as much as 34% by 2060 under the A2 
emissions scenario.99 Decreasing runoff and groundwater recharge 
are expected to reduce surface and groundwater supplies,66 increas-
ing the annual risk of water shortages from 25% to 50% by 2060.130 
Changes in streamflow timing will increase the mismatch of supply 
and demand. Earlier and declining streamflow and rising demands 
will make it more difficult to manage reservoirs, aquifers, and other 
water infrastructure.130 

Such impacts and consequences have been identified for several 
southwestern and western river basins including the Colorado,38 Rio 
Grande,126 and Sacramento-San Joaquin.127,128,129

New information and remaining uncertainties
The drying climate trend observed in the Southwest and Southeast in 
the last decades is consistent across all water cycle variables (precipi-
tation, temperature, snow cover, runoff, streamflow, reservoir levels, 
and soil moisture) and is not debatable. The debate is over whether 
this trend is part of a multi-decadal climate cycle and whether it will 
reverse direction at some future time. However, the rate of change 
and the comparative GCM assessment results with and without his-
torical CO2 forcing (Ch. 2: Our Changing Climate) support the view 
that the observed trends are due to both factors acting concurrently.

GCMs continue to be uncertain with respect to precipitation, but they 
are very consistent with respect to temperature. Runoff, streamflow, 
and soil moisture depend on both variables and are thus less sus-
ceptible to GCM precipitation uncertainty. The observed trends and 
the general GCM agreement that the southern states will continue 
to experience streamflow and soil moisture reductions34,41 provides 
confidence that these projections are robust.

Assessment of confidence based on evidence 
Given the evidence base and remaining uncertainties, confidence is 
high that changes in precipitation and runoff, combined with changes 
in consumption and withdrawal, have reduced surface and ground-
water supplies in many areas. Confidence is high that these trends are 
expected to continue, increasing the likelihood of water shortages for 
many uses. 

Key message #9 Traceable accounT

Increasing flooding risk affects human safety and 
health, property, infrastructure, economies, and 
ecology in many basins across the U.S. 

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 Ch. 2: Our Changing Climate, Ch. 21: Northwest, Ch. 19: 
Great Plains, Ch. 18: Midwest, Ch. 16: Northeast, and over 500 techni-
cal inputs on a wide range of topics that were received as part of the 
Federal Register Notice solicitation for public input.

Observed Trends: Very heavy precipitation events have intensified 
in recent decades in most U.S. regions, and this trend is projected to 
continue (Ch. 2: Our Changing Climate). Increasing heavy precipita-
tion is an important contributing factor for floods, but flood magni-
tude changes also depend on specific watershed conditions (including 
soil moisture, impervious area, and other human-caused alterations).  
There is, however, some correspondence among regions with signifi-
cant changes in annual precipitation (Ch. 2: Our Changing Climate), 
soil moisture (Figures 3.2 and 3.3), and annual flood magnitudes (Fig-
ure 3.5).58 

Flooding and seawater intrusion from sea level rise and increas-
ing storm surge threaten New York, Boston, Philadelphia, Virginia 
Beach, Wilmington, Charleston, Miami, Tampa, Naples, Mobile, 
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Houston, New Orleans, and many other coastal cities (Chapter 25: 
Coasts). 

Projected Trends: Projections of future flood-frequency changes re-
sult from detailed hydrologic60,133,135 and hydraulic models of rivers 
that simulate responses to projected precipitation and temperature 
changes from climate models. 

Consequences: Floods already affect human health and safety and 
result in substantial economic, ecological, and infrastructure dam-
ages. Many cities are located along coasts and, in some of these cities 
(including New York, Boston, Miami, Savannah, and New Orleans), sea 
level rise is expected to exacerbate coastal flooding issues by backing 
up flood flows and impeding flood-management responses (see Ch. 
16: Northeast and Ch. 25: Coasts).136

Projected changes in flood frequency and severity can bring new 
challenges in flood risk management. For urban areas in particular, 
flooding impacts critical infrastructure in ways that are difficult to 
foresee and can result in interconnected and cascading failures (for 
example, failure of electrical generating lines can cause pump failure, 
additional flooding, and failure of evacuation services). Increasing 
likelihood of flooding also brings with it human health risks associ-
ated with failure of critical infrastructure (Ch. 11: Urban),137 from wa-
terborne disease that can persist well beyond the occurrence of very 
heavy precipitation (Ch. 9: Human Health),139 from water outages 
associated with infrastructure failures that cause decreased sanitary 
conditions,138 and from ecosystem changes that can affect airborne 
diseases (Ch. 8: Ecosystems).140

New information and remaining uncertainties
Large uncertainties still exist as to how well climate models can rep-
resent and project future precipitation extremes. However, precipita-
tion extremes are expected to intensify as the atmosphere warms, 
and many floods result from larger portions of catchment areas re-
ceiving rain as snowlines recede upward. As rain runs off more quickly 
than snowfall, this results in increased flood potential; furthermore 
occasional rain-on-snow events exacerbate this effect. This trend is 
broadly expected to increase in frequency under general warming 
trends, particularly in mountainous catchments.62

Assessment of confidence based on evidence 
Future changes in flood frequencies and intensities will depend on a 
complex combination of local to regional climatic influences and on 
the details of complex surface-hydrologic conditions in each catch-
ment (for example, topography, land cover, and upstream manage-
ments). Consequently, flood frequency changes may be neither 
simple nor regionally homogeneous, and basin by basin projections 
may need to be developed. Nonetheless, early results now appearing 
in the literature have most often projected intensifications of flood 

regimes, in large part as responses to projections of more intense 
storms and more rainfall runoff from previously snowbound catch-
ments and settings.

Therefore, confidence is judged to be medium that increasing flood-
ing risk affects human safety and health, property, infrastructure, 
economies, and ecology in many basins across the U.S. 

Key message #10 Traceable accounT

In most U.S. regions, water resources managers 
and planners will encounter new risks, vulnerabili-
ties, and opportunities that may not be properly 
managed within existing practices.

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document,1 other chapters of the NCA, and over 500 technical inputs 
on a wide range of topics that were received as part of the Federal 
Register Notice solicitation for public input.

Observed and Projected Trends: Many U.S. regions are facing critical 
water management and planning challenges. Recent assessments il-
lustrate water management challenges facing California,127,128,129,149 
the Southwest,130,151 Southeast (Ch. 17: Southeast),136,152 North-
west,153 Great Plains,154 and Great Lakes.155

The Sacramento-San Joaquin Bay Delta is already threatened by 
flooding, seawater intrusion, and changing needs for environmental, 
municipal, and agricultural water uses. Managing these risks and uses 
requires reassessment of a very complex system of water rights, le-
vees, stakeholder consensus processes, reservoir system operations, 
and significant investments, all of which are subject to large uncer-
tainties.54,148 Given the projected climate changes in the Sacramen-
to-San Joaquin Bay Delta, adherence to historical management and 
planning practices may not be a long-term viable option,128,129 but the 
supporting science is not yet fully actionable,42 and a flexible legal 
and policy framework embracing change and uncertainty is lacking. 

The Apalachicola-Chattahoochee-Flint (ACF) River basin in Georgia, 
Alabama, and Florida supports a wide range of water uses and the 
regional economy, creating challenging water-sharing tradeoffs for 
the basin stakeholders. Climate change presents new stresses and 
uncertainties.152 ACF stakeholders are working to develop a manage-
ment plan that balances economic, ecological, and social values.160

New information and remaining uncertainties
Changes in climate, water demand, land use, and demography com-
bine to challenge water management in unprecedented ways. This is 
happening with a very high degree of certainty in most U.S. regions. 
Regardless of its underlying causes, climate change poses difficult 
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challenges for water management because it invalidates stationarity 
– the perception that climate varies around a predictable mean based 
on the experience of the last century – and increases hydrologic vari-
ability and uncertainty. These conditions suggest that past manage-
ment practices will become increasingly ineffective and that water 
management can benefit by the adoption of iterative, risk-based, and 
adaptive approaches. 

Assessment of confidence based on evidence 
The water resources literature is unanimous that water management 
should rely less on historical practices and responses and more on 
robust, risk-based, and adaptive decision approaches. 

Therefore confidence is very high that in most U.S. regions, water 
resources managers and planners will face new risks, vulnerabilities, 
and opportunities that may not be properly managed with existing 
practices. 

Key message #11 Traceable accounT

Increasing resilience and enhancing adaptive ca-
pacity provide opportunities to strengthen water 
resources management and plan for climate change 
impacts. Many institutional, scientific, economic, 
and political barriers present challenges to imple-
menting adaptive strategies. 

Description of evidence base
The key message and supporting chapter text summarizes extensive 
evidence documented in the inter-agency prepared foundational 
document1 and over 500 technical inputs on a wide range of topics 
that were received as part of the Federal Register Notice solicitation 
for public input.

There are many examples of adaptive strategies for water infra-
structure106,132,164,165 as well as strategies for demand management, 

land-use and watershed management, and use of “green” infrastruc-
ture.1,106,132,166,167

Building adaptive capacity ultimately increases the ability to develop 
and implement adaptation strategies and is considered a no-regrets 
strategy.1,169 Building networks, partnerships, and support systems 
has been identified as a major asset in building adaptive capacity (Ch. 
26: Decision Support; Ch. 28: Adaptation).170

Water utility associations have undertaken original research to better 
understand the implications of climate change on behalf of some of 
the largest municipal water utilities in the United States.119,156,176

Challenges include “stationarity” no longer being reliable as the cen-
tral assumption in water-resource planning,171 considerable uncer-
tainties, insufficient actionable science ready for practical application, 
the challenges of stakeholder engagement, and a lack of agreement 
on “post-stationarity” paradigms on which to base water laws, regu-
lations, and policies.42 Water administrators may find it necessary to 
develop more flexible water rights and regulations.132,172,173

New information and remaining uncertainties
Jurisdictions at the state and local levels are addressing climate 
change related legal and institutional issues on an individual basis. 
An ongoing assessment of these efforts may show more practical ap-
plications. 

Assessment of confidence based on evidence 
Confidence is very high that increasing resilience and enhancing 
adaptive capacity provide opportunities to strengthen water resourc-
es management and plan for climate change impacts. 

Confidence is very high that many institutional, scientific, economic, 
and political barriers present challenges to implementing adaptive 
strategies.


