
La Houille Blanche, n° 4, 2016, p. 57-65 DOI 10.1051/lhb/2016040

57

DOI 10.1051/lhb/2016040

Différentiation algorithmique appliquée à la calibration optimale
d’un modèle hydraulique à surface libre

Félix DEMANGEON1, Cédric GOEURY2, Fabrice ZAOUI2, Nicole GOUTAL1 2,
Valérie PASCUAL3, Laurent HASCOËT3

1. Laboratoire d’Hydraulique Saint‑Venant (entité commune à EDF R&D, CEREMA et l’Ecole des Ponts), Chatou, France
2. EDF R&D, Laboratoire National d’Hydraulique et Environnement (LNHE), Chatou, France ‑ e‑mail: fabrice.zaoui@edf.fr
3. INRIA, (ECUADOR team), Sophia‑Antipolis, France

RÉSUMÉ. – Les informations de sensibilité fournies par les dérivées sont indispensables en science dans de nombreux
domaines. En analyse numérique, calculer très précisément la valeur des dérivées d’une fonction d’un simulateur phy‑
sique peut relever du défi. La méthode classique des Différences Finies (DF) est une solution simple à mettre en œuvre
pour estimer la valeur d’une dérivée. Cependant, elle reste très sensible numériquement et coûteuse en temps de calcul.
A contrario la méthode de la Différentiation Algorithmique (DA) est une aide puissante pour le calcul des dérivées d’une
fonction décrite au moyen d’un programme informatique. Quelle que soit la complexité des algorithmes mis en œuvre
dans l’expression d’une fonction, elle calcule précisément sa dérivée en minimisant les efforts de développement.
Cet article montre l’apport de la DA en comparaison des DF sur le problème du calage d’un modèle hydraulique à
surface libre 1D de classe industrielle. Le calage du modèle est réalisé par un optimiseur mathématique déterministe
nécessitant le calcul précis de la sensibilité de la cote d’eau par rapport au frottement sur le fond de la rivière. Deux cas
tests réels de comparaison sont présentés. Ils permettent de valider la supériorité attendue de la DA comme outil d’aide
à l’obtention d’un calage optimal.

Mots‑clés : modèle hydraulique à surface libre, calage, différentiation algorithmique

Algorithmic Differentiation for the optimal calibration of a shallow water model

ABSTRACT. – The information on sensitivity provided by derivatives is indispensable in many fields of science. In
numerical analysis, computing the accurate value of the derivatives of a function can be a challenge. The classical
Finite Differences (FD) method is a simple solution to implement when estimating the value of a derivative. However, it
remains highly sensitive numerically and costly in calculation time. Conversely, the Algorithmic Differentiation Method
(AD) is a powerful tool for calculating the derivatives of a function described by a computer program. Whatever the
complexity of the algorithms implemented in the expression of a function, AD calculates its derivative accurately and
reduces development efforts.
This article presents the contribution of AD in comparison to FD in the problem of calibrating an industrial class 1D
shallow water model. Model calibration is performed by a deterministic mathematical optimiser requiring accurate cal‑
culation of the sensitivity of the water surface profile in relation to the friction on a river bed. Two comparative real test
cases are presented. They permit validating the better performance expected from AD as a tool used to obtain optimal
calibration.

Key‑words: shallow water model, calibration, algorithmic differentiation

I. IntroDuctIon

Computing sensitivities of a numerical model is a key
ingredient in Scientific Computing. The derivatives that
express these sensitivities must be computed with the
best possible accuracy for applications such as inverse
problems, data assimilation, optimisation, or Uncertainty
Quantification. When the model is given as a computer
program, several options exist to obtain its derivatives.
Finite Differences (FD) is easily implemented but returns
approximate derivatives whose poor accuracy will degrade
performance of the complete application. A much bet‑
ter option is to create a new program that computes the
exact, analytical derivatives of the model. This new pro‑
gram can be written “by hand”, but this is a long and
error‑prone process. Keeping the derivative model up to

date with modifications of the original model is cumber‑
some. Alternatively, Algorithmic Differentiation (AD)
[Griewank and Walther, 2008] is a way to automate the
creation of the derivative program, thus providing accu‑
rate derivatives for a minimal development effort. AD
for the shallow water equations is mainly concerned with
4‑D Var data assimilation methods [Honnorat et al., 2007;
Fang et al., 2011; Fang et al., 2013]. This article presents
the application of the TAPENADE AD tool [Hascoët and
Pascual, 2013] developed by INRIA, on the 1D shallow
water model MASCARET [Goutal et al., 2012] for model
calibration. It validates the use of the differentiated code
for an inverse problem of parameter estimation. With AD,
the parameter estimation can be optimal and the impact on
the performance of a model positive and persistent [Zhu
and Navon, 1999].

Article published by SHF and available at http://www.shf-lhb.org or http://dx.doi.org/10.1051/lhb/2016040

mailto:fabrice.zaoui@edf.fr
http://www.shf-lhb.org
http://dx.doi.org/10.1051/lhb/2016040

58

DOI 10.1051/lhb/2016040 La Houille Blanche, n° 4, 2016, p. 57-65

Regarding shallow water programs like MASCARET, the
type of river bed is modelled by a friction coefficient. This
coefficient takes into account the friction of the fluid on the
bottom as well as other phenomena not modelled elsewhere
such as turbulence and channel bends. This article presents
the application of AD to an inverse problem, namely the
automatic calibration of the friction coefficient based on a
water surface profile measured during flooding at steady
discharge. This permits testing both the AD TAPENADE
software with an industrial calculation code and improving
the current method used to calibrate the friction coefficient
in MASCARET.

Initially, after having introduced the MASCARET 1D
water flow calculation, the problem of calibrating the friction
coefficient is presented (cf. Section II). Section III focuses
on the presentation of the optimisation algorithm chosen to
carry out this task. Then, Section IV describes the princi‑
ple and use of AD. In Section V, the results obtained from
the different test cases are presented and discussed. Finally,
the conclusions and outlook are presented in Section VI.

II. tHE WAtEr MoDELLInG SYStEM

The calculation code on which the works presented
here is based is the MASCARET 1D free surface mod‑
elling software. This software is part of the open‑source
hydro‑computing system TELEMAC‑MASCARET (www.
openmascaret.org). Applications of this system are many,
from flood modelling and flood plain modelling to the calcu‑
lation of flood waves resulting from dam breaches, sediment
transport and water quality. It is composed of three main
kernels: steady subcritical flow, unsteady subcritical flow
and unsteady super‑critical flow. The steady subcritical flow
kernel is the target of this study.

II.1. Saint‑Venant 1D equations

As mentioned above, we focus only on 1D steady flows.
The equations governing this type of flow are 1D Barré
St‑Venant equations given by the following formulations
[Chanson, 2004]:

 ∂
∂
Q
x
= qa (1)

 ∂
∂

∂
∂x

Q
A
+ gA Z

x
= gA(S +S)+qf s a

2
 (2)

where A represents the wetted section (m2), Q the flow rate
(m3/s), qa the inflow, Z the free water surface (m), S f the
head losses resulting from the friction of the fluid on the
walls, Ss the singular head losses (narrowing, etc.).

Term S f of the momentum equation (2) is calculated using
empirical friction laws such as that of Strickler (19th century)
whose relation is given below:

 S = Q
K A Rf

2

2 2 4 3/ (3)

where R denotes the hydraulic radius (wetted surface divided
by the wetted perimeter in m) and K, the Strickler coeffi‑
cient modelling the nature of the channel bed (m1/3/s).

In the MASCARET hydraulic calculation, the river
bed is divided into two zones, the main channel and the
flood plain. The main channel is the main flow zone. The
flood plain is the secondary zone: this zone participates in
the flood flow, though it has a specific friction coefficient
due to the different natures of the soils. This coefficient is
defined by the cross‑section and by the bed, and is constant
per friction zone, whose sizes and numbers are determined
by the study data. The friction coefficient takes into account
the friction of the walls on the fluid and the dissipation
phenomena not modelled elsewhere (turbulence, etc.). Thus
it cannot be determined directly by the study data and must
be adjusted using the water surface profiles measured for a
given flow rate. Done manually, this model calibration step
is time consuming since coefficients are set independently,
but it is indispensable to ensure the quality of the study.
That is why an automatic calibration method using measured
elevation data has already been integrated in MASCARET.

This automatic calibration method is based on a first
order unconstrained optimisation method known as “gradi‑
ent descent optimisation”, with a gradient approximated by
finite difference. The disadvantages of this approach are:
•	The speed of convergence can prove slow.
•	The accuracy of the divided differences is sometimes poor.
•	The obtained friction coefficients can go out of prescribed
bounds of “physical” values.

Therefore the objective of this work is to propose a
more efficient automatic calibration algorithm capable of
eliminating the limitations mentioned, using Algorithmic
Differentiation methods.

II.2. Automatic calibration

Automatic calibration is an inverse method used to find
an “admissible” constant friction coefficient K per zone,
resulting in the calculation of a water surface profile close
to the water surface profile measured for a steady flow. The
optimal search for this coefficient is done by minimising a
cost function calculating the difference between the level
computed by the numerical model and the measured level:

 J K = Z Z Kj
c

j
meas

j
calc

j=

Nmeas
c

c=

N flo

() ()α −()

∑ 2

11

ood

∑ (4)

where N flood represents the number of floods, Nmeas
c the

number of measures linked to these floods, α j
c a weighting

coefficient that can be set to less than 1 when a measure is
deemed uncertain, Z j

meas the water level measured at point j
and Z j

calc the height calculated by the model.
Generally, optimisation methods are used to solve mini‑

misation problems. The former can be very different accord‑
ing to the form of the function to be minimised (convex,
quadratic, nonlinear, etc.), its regularity and the dimension
of the space studied [Nocedal and Wright, 2006]. Many
deterministic optimisation methods are known as gradi‑
ent descent methods, among which the best known is the
Newton method, which is the approach used in this work
[Gilbert and Lemaréchal, 1989]. This minimisation process
will quickly find, when successful, a better solution in com‑
parison with the value of the initial guess.

Unfortunately the inverse problem (4) is often ill‑posed
and unstable: available data can correspond to more than one

59

La Houille Blanche, n° 4, 2016, p. 57-65 DOI 10.1051/lhb/2016040

solution, and small changes in data result in very different
solutions for the friction coefficients. These two problems
are intimately related to the issue of parameter identifiability
[Navon, 1998]. Consequently, in order to get a successful
parameter estimation, the automatic calibration only esti‑
mates a small number of friction coefficients in the spa‑
tial domain and a bound constrained optimizer guarantees
that the estimated coefficients values remain physical. Some
techniques like regularization [Navon, 1998] are also pos‑
sible but not investigated in this work.

III. tHE BFGS QuASI‑nEWton MEtHoD

As mentioned above, the optimisation method chosen to
minimise the cost function (4) is based on the application
of the Newton method to the gradient of the functional J,
to find the zeros and then the extremes, thus the minimum.
This method involves the calculation of the first and second
derivatives of the cost function. The main disadvantage of
this type of approach is the use of the second derivative
(Hessian) of the cost function ∇2J K(). Indeed, at each itera‑
tion of the Newton algorithm, it is necessary to calculate the
Hessian and solve a linear system of the matrix ∇2J K()
. For large problems, the resolution of the linear system is
out of reach. An alternative is to use algorithms such as the
Quasi‑Newton algorithm which provides Hessian approxi‑
mations that improve as the iterations progress, for a rea‑
sonable cost. Therefore the method chosen to perform this
work is the constrained Broyden Fletcher Goldfarb Shanno
Quasi‑Newton Method (BFGS).

The optimisation problem is formulated as follows:

 Min J (K) (5)

subject to bound constraints:

K K K i ni i i
min max (,..,)≤ ≤ = 1

If Kk is the solution at stage k, a direction d k is obtained
by solving:

 Min J K d d M dk T k k kT

∇ +() . . .1
2

 (6)

with: di = 0 if K Ki i≈ min or K Ki i≈ max and M is the approxi‑
mate Hessian matrix.

A line search is then performed along the direction d k to
find a new feasible solution Kk+1. Then M is modified by
the BFGS formula:

 M M M
K

K K
K

K M M
k k

kT k k

k k

k k

k k

k k k

T

T

T

T T

+ = + +

 −

+()1 1 1
2

γ γ
δ γ

δ δ
δ γ

δ γ kk

k kKδ γ

(7)

with: δK K Kk k k= − −1 and: γ k k kJ K J K= ∇ − ∇+() ()1
The limited memory version of the algorithm (L‑BFGS)

[Zhu et al., 1997] is not used in this work since the num‑
ber of variables is very small when calibrating the Strickler

coefficient K. This assertion is usually true for 1‑D or 2‑D
shallow water problems and consequently the dense storage
of the Hessian matrix is not cumbersome.

Using a constrained optimisation method makes it possible
to impose boundaries when seeking the parameter to be cali‑
brated. Although the friction coefficient takes into account
dissipation phenomena that cannot be represented in the
numerical model, it is directly dependent on the type of sur‑
face composing the river bed. Thus an interval of acceptable
“physical” values exists for searching the friction coefficient
as a function of the type of soil.

The optimisation method used involves calculating the
gradient of the cost function. One could compute an accurate
gradient by manually differentiating the calculation code.
However this would be time‑consuming and error‑prone, as
this implies writing a code of a size similar to the original
code (more than 10,000 lines of Fortran for MASCARET
steady flow kernel). Nonetheless, AD software tools can
alleviate this cost [Griewank and Walther, 2008].

IV. ALGorItHMIc DIFFErEntIAtIon

Algorithmic Differentiation of programs is a power‑
ful technique for evaluating the derivatives of functions
described by computer programs. Contrary to traditional
approaches, such as derivation by finite differences, AD
provides accurate derivatives at a relatively cheap cost, for a
simple mathematical formula as well as for a program with
more than 100,000 lines of code. By calculating an exact
derivative, AD thus plays a key role in developing a new
optimisation method for the automatic calibration of the
friction coefficient. This section describes the principle of
AD. Then, after having presented the TAPENADE software
[Hascoët and Pascual, 2013], used to differentiate the kernel
of the steady calculation of MASCARET, its application is
described in the framework of implementing the optimal
calibration of a shallow water model [Cunge et al., 1980;
Fread and Smith, 1978; Vidal, 2005].

IV.1. Principle of Algorithmic Differentiation

Every calculation program, or at least its run‑time trace,
can be seen as a sequence of assignments involving only
unary (trigonometric function, square root, etc.) and binary
(additions, multiplications, etc.) operations. Therefore, the
program can be seen as a composition of elementary func‑
tions, to which one can apply the chain rule of calculus to
obtain its derivative with analytic accuracy.

Consider a mathematical function F:

 F
X Y

n m:ℜ → ℜ

 (8)

Assume F is implemented as a sequence of r computer
program instructions, each of them implementing an elemen‑
tary function. Call f l the elementary function corresponding
to instruction l:

 Y = F(X)= f f f (X)r r

−1 1... (9)

By applying the chain rule of calculus to equation (9), the
Jacobian matrix A of F, which is a m n× matrix, writes as
the product of the derivatives of the f l .

60

DOI 10.1051/lhb/2016040 La Houille Blanche, n° 4, 2016, p. 57-65

A(X)= F

X
(X)= f

x
(x) f

x
(x) f

x
(x) fr

r
r

r

r
r∂

∂
∂

∂
∂
∂

∂
∂

∂
−

−
−

−
−

1
1

1

2
2

2

1
1. .

11

∂X
(X)

 (10)

Explicit evaluation of equation (10) can be extremely
costly, as each derivative involved is a matrix roughly of
size q q× , where q is the number of elementary variables
active at the time of the instruction, i.e. of the order or larger
than m and n. Therefore, AD rather focuses on computing
two useful projections of A, from which it may even be
easier to retrieve the full A if necessary. This results in the
two so‑called “modes” of AD:
•	The tangent mode computes ∂ ∂Y = A X. for any arbitrary
vector ∂ ∈ℜX n . In other words, it computes a directional
derivative which is the first‑order variation of the output for
a small variation of the input in direction ∂X . From equation
(10), it is clear that ∂ ∂Y = A X. is most efficiently computed
from right to left, leading to only matrix‑vector products.
The total cost of evaluating ∂Y is only a small multiple of
evaluating F. If ∂X is taken as an element of the Cartesian
basis, ∂Y is a column of the Jacobian A. The full A can be
obtained by repeated calls to the tangent code on the input
space’s Cartesian basis. Notice that tangent mode implies the
same computation order as the original program, and there‑
fore derivative computations can be introduced into the orig‑
inal code by inserting a derivative instruction before each
original instruction. Implementation of the tangent mode is
therefore straightforward. Table 1 (middle) shows the tan‑
gent differentiated code of a simple code shown on the left,
which computes the norm of a 3D vector. Derivative vari‑
able names are built with an appended “d”. One can see the
straightforward structure of the tangent code. This tangent
code must be run three times to obtain the three components
of the gradient.
•	The adjoint mode computes ∂ ∂* * .X = Y A for any arbitrary
(transposed) vector ∂ ∈ℜ*Y m. In other words it computes
the gradient with respect to X of a scalar function, which
is the weighted sum of all elements of Y with weightings
∂*Y . From equation (10), it is clear that ∂*X is most effi‑
ciently computed from left to right, since this leads only
to vector‑matrix products. Just like for the tangent mode,
the total cost of evaluating ∂*X is only a small multiple of
evaluating F. If ∂*Y is taken as an element of the Cartesian
basis, ∂*X is a row of the Jacobian A. The full A can be
obtained by repeated calls to the adjoint code on the output

space’s Cartesian basis. Therefore, the adjoint mode tremen‑
dously outperforms the tangent mode when m=1, which is
the case in most optimization or inverse problems applica‑
tions. The computation order for the derivatives is reversed
from the original program’s order, which makes imple‑
mentation of the adjoint mode a technical challenge (see
[Hascoët and Pascual, 2013]). In particular, intermediate
values from the original computation must be made avail‑
able to the derivative computation in reversed order, lead‑
ing to difficult memory problems and trade‑offs [Naumann,
2012]. Table 1 (right) shows the adjoint differentiated code
of the same simple code. Derivative variable names are built
with an appended “b”. One can see the reversed structure of
the adjoint code, and the somewhat counter‑intuitive shape
of the derivative instructions. However, this adjoint code
returns the three components of the gradient in only one run.

For further details on AD and the associated research,
the reader can refer to [Griewank and Walther, 2008],
[Naumann, 2012], to the proceedings of the AD conferences,
and to the AD community website www.autodiff.org.

IV.2. Algorithmic Differentiation implementation
approaches

AD tools rely mostly on two different approaches,
Operator Overloading and Source Transformation:
•	The Operator Overloading approach is possible only on
languages that support overloading, such as C++, ADA and
Fortran 90. Examples of AD tools of this kind are ADOL‑C
[Walther and Griewank, 2012], and dco [Lotz et al., 2011].
This AD method is the simplest to implement, since it
requires only the definition of a new data‑type, and of the
overloaded arithmetic operations on this data type. Changes
to the original code are minimal. However, efficiency is lim‑
ited by the run‑time overhead of the overloading mechanism,
and the reversed nature of the adjoint mode contradicts the
natural order of overloading, causing extra run‑time and
memory overhead;
•	The Source Transformation approach is used for instance
in the tools TAF [Giering et al., 2005], ADIC [Bischof
et al., 1997], ADIFOR [Bischof et al., 1991], OpenAD
[Utke et al., 2008], and TAPENADE [Hascoët and Pascual,
2013]. These tools target mainly C and Fortran 90 programs.
Source transformation uses concepts from compilation, for
example the generation and transformation of abstract syn‑
tax trees. Like in a compiler, the source program is parsed,

Table 1: Algorithmic differentiation of a simple code.

original code tangent code Adjoint code
s = x*x sd = 2.0*x*xd s = x*x

s = s + y*y s = x*x s = s + y*y
s = s + z*z sd = sd + 2.0*y*yd s = s + z*z

n = SQRT(s) y = s + y*y n = SQRT(s)
sd = sd + 2.0*z*zd sb = 0.5*nb/SQRT(s)

s = s + z*z nb = 0.0
nd = 0.5*sd/SQRT(s) zb = zb + 2.0*z*sb

n = SQRT(s) yb = yb + 2.0*y*sb
xb = xb + 2.0*x*sb

sb = 0.0

61

La Houille Blanche, n° 4, 2016, p. 57-65 DOI 10.1051/lhb/2016040

analysed, and then transformed into a new differentiated
source program. Sophisticated compilation techniques allow
for optimisations that improve performance of the differen‑
tiated code.

IV.3. the tAPEnADE AD tool

The AD tool chosen for this work is TAPENADE, devel‑
oped by the ECUADOR team of INRIA [Hascoët and
Pascual, 2013]. Tapenade is based on the source transforma‑
tion approach. It globally analyses the code to which it is
applied and fully rebuilds a differentiated program, adding
instructions into the original program. It applies to both
Fortran 90 and C. TAPENADE provides both tangent‑ and
adjoint‑mode AD. One reason for our choice is the direct
access to the differentiated source, providing much flexibil‑
ity and the opportunity to optimise the execution time of the
adjoint by adjusting the differentiated program.

Collaboration between EDF and INRIA helped in apply‑
ing TAPENADE to MASCARET and provided feedback
and experience on the problems encountered, thus bringing
improvements to both tools.

IV.4. Application of tAPEnADE to MAScArEt

IV.4.1. Context

As mentioned in section II.2, the search for an optimal
friction coefficient during automatic calibration must be
done by minimising the cost function (4). In our calibration
experiments, we calibrate K defined as Ki for each friction
zone i, whereas what the simulation uses is an expanded
expK defined at each node p. By definition, for all node p
belonging to friction zone i:

 expK Kp i= (8)

The cost function (4) becomes:

 J(K)= Z Z K Kj
c

j
meas

j
calc

j=

Nmeas
c

 α −()

∑ (exp ())
2

1cc=

N flood

1
∑ (9)

The gradient of J with respect to K is:

d J
dK
= Z Z expK K

dZ
d K

d K
dKj

c
j
meas

j
calc j

calc

j=

− −()()2α (())
exp

exp

111

Nmeas
c

c=

N flood

∑∑

 (10)

where Z j
calc is the water surface profile calculated from expK

by the model. The matrix d K
dK
exp has a very simple struc‑

ture, with one row per node and one column per friction
zone. For each friction zone i, this column elements are 1
for nodes p belonging to i and 0 otherwise.

IV.4.2. Choice of the AD mode

The largest and most computationally‑intensive part of
equation (10) is the derivative of the water surface calculated

at each point j of the grid as a function of the friction coef‑
ficients at each node:

dZ
d K

j
calc

exp
 (11)

As is usually the case, it is fortunately not needed to
compute this large matrix explicitly. Equation (10) actually
amounts to multiplying this matrix on the left and on the
right as follows:
•	 on the left, it is multiplied with a single‑row matrix, i.e. a
transposed vector, whose element of rank j is:

 − −
=

∑ 2
1

α j
c

j
meas

j
calc

c

N

Z Z K K
flood

((exp ())) (12)

assuming there is a measurement available at each point. If
not, set α j

c to 0.

•	 on the right, it is multiplied with d K
dK
exp which has one

column per friction zone. Our first applications have only a
few friction zones.

As the left multiplier is a single‑row matrix, we are aware

that adjoint differentiation can compute the complete d J
dK

 in

a single run of the adjoint code. On the other hand, since the
right multiplier has one column per friction zone, the code
produced by tangent differentiation must run once per fric‑

tion zone to compute the full d J
dK

.

However, our first applications have less than 10 friction
zones and experience shows that adjoint codes are almost
always 2 to 5 times slower than tangent codes, due to their
sophisticated architecture. Moreover, the present architecture
of MASCARET doesn’t lend itself easily to isolating the
computation of the left row‑vector multiplier. For these rea‑
sons, we feel it is wise to use the tangent mode of AD for
our first calibration experiments, and in the future slightly
refactor MASCARET and switch to the adjoint mode when
it comes to larger cases.

IV.4.3. Actual differentiation and derivatives validation

Actual differentiation by TAPENADE of the steady sub‑
critical kernel of MASCARET requires some technical adap‑
tions, as is often the case for codes of this size (≈140,000
lines of code). Differentiation itself produces a long mes‑
sage log, most of which can be discarded after a first care‑
ful look. The remaining messages are about limitations of
the AD tool that must be worked around by modifying the
source (e.g. array initializations), or limitations of AD that
require post‑processing of the differentiated code. In the lat‑
ter category, differentiation of MASCARET introduces tem‑
porary arrays for intermediate variables and boolean masks,
whose size could not be determined at differentiation time.
The end‑user is requested to provide these sizes in a spe‑
cial‑purpose separate module.

As a research tool, TAPENADE also contains a number
of errors. Collaboration between the AD tool developers
and MASCARET developers is essential, resulting often in
improvements to the AD tool and sometimes in clarifications
to the MASCARET source.

When it finally compiles, the differentiated code must be
incorporated in a calling context which is similar to that of

62

DOI 10.1051/lhb/2016040 La Houille Blanche, n° 4, 2016, p. 57-65

the original code, except for additional variables that hold
the input and output derivatives. This can be seen as the
task of the final user but on this occasion we could test an
experimental feature of the AD tool which generates a new
calling context from the existing one by declaring, allocat‑
ing, initializing and freeing the differentiated variables. This
is an ongoing development, as adjoint differentiation of pro‑
grams with dynamic memory management is still an active
research subject.

Once the differentiated code actually produces derivatives,
it is necessary to check their correctness. Validation of the
derivatives is usually performed in two steps:
•	Validation of the tangent derivatives produced by AD,
against derivatives approximated by Finite Differences.
•	Validation of the adjoint derivatives against the (validated)
tangent derivatives. Reusing the notation of section IV.1,
given any two vectors ∂X and ∂*Y , the scalar ∂ ∂*Y X.A.
can be computed in two ways, either through tangent mode
or through adjoint mode. The result must be the same up to
machine precision.

We performed these two tests on MASCARET for the
steady river test cases, with satisfying results. Even if for this
work, we decided not to use the adjoint for the final calibration
experiments, we did validate both tangent and adjoint codes:
•	The maximum difference between the gradient calculated
by FD and that obtained by AD is of the order of 10 4− .
•	The maximum difference observed between the gradient
calculated by the tangent and adjoint modes is of the order
of machine precision (≈ 10 14−).

Finally, the runtime of the tangent code is roughly twice
the run time or the original code, whereas the adjoint code is
roughly seven times slower than the original code. This varies
with the test case but conforms to what is commonly expected.
This validates a posteriori our choice of using the tangent mode
for the following calibrations, and indicates to switch to the
adjoint mode when calibrating a larger number of parameters.

V. VALIDAtIon oF tHE AutoMAtIc
cALIBrAtIon MEtHoD

In order to validate the automatic calibration method devel‑
oped during this work, two cases of real application were
studied. Since the new algorithm allows bounding the search
for optimal friction coefficients, in order to avoid all outliers
and non‑physical values, it is performed in 25 to 45 m1/3/s
for the main channel and in 5 to 20 m1/3/s for the flood plain.

The results obtained with the method developed here
were compared with those obtained using the old first
order calibration method with a gradient calculated by FD.
The comparison between the two approaches is performed
by focusing on the speed of convergence of the different
methods used, the final value of their cost function and, of
course, the values of the friction coefficients obtained.

V.1. calibration of the reach of the rhone close to the
Bugey nuclear power plant

V.1.1. Context and available data

This first case study corresponds to a 5 km section of
the Rhone River located near the Bugey nuclear power
plant. Upstream and downstream of the model, the boundary
conditions used are the imposed flow rate and water level,
respectively. In addition, for this case, 30 inflows distributed
along the river were taken into account. The geometry of

this calculation case is not described as it not the purpose of
the present study.

Regarding the calibration, 8 friction zones of variable size
were considered and 28 water level measures were available
(cf. figure 1) for an upstream flow rate of 446 m3/s and a
downstream water level of 188.10 m. Since the upstream
flow rate for which observations were available was rela‑
tively low, the flow regime studied was non‑overtopping.
Therefore, only the friction coefficients of the main channel
could be calibrated.

Furthermore, since this case had already been the subject
of a study, calibration data obtained manually were also
available. The Strickler coefficient values per friction zone
calibrated manually were (43 / 28.5 / 39 / 34 / 45 / 27 / 35 /
35) m1/3/s.

V.1.2. Comparison of results obtained during automatic
calibration

The purpose of this paragraph is to compare the results
obtained with:
•	The automatic calibration method using the BFGS optimi‑
sation method.
•	The former calibration method using the gradient descent
optimisation method.
•	A reference manual calibration.

Figure 1 presents the water surface profiles obtained for
these three different calibration methods. For the two auto‑
matic calibration methods, the Strickler coefficient was ini‑
tialised at a value of 30 m1/3/s in each zone.

As shown in the figure above, the results obtained from
the three calibration methods are very similar for the water
surface profile calculated. This confirms the methodological
choices that we present in this document.

Figure 2 shows the friction coefficient values obtained
with the three methods.

 From Figure 2, we draw the following observations:
•	The values resulting from the manual and automatic cali‑
brations making use of the BFGS optimisation method are,
generally speaking, quite close (about 10% in terms of rela‑
tive error).
•	The magnitude of variability of the Strickler coefficients
between two consecutive friction zones is greater for the
two previous methods than for automatic calibration method
using the gradient descent optimisation method.

Figure 1: Water height calculated using the friction coeffi‑
cients of the main channel calibrated manually and automa‑
tically (BFGS, gradient descent optimisation).

63

La Houille Blanche, n° 4, 2016, p. 57-65 DOI 10.1051/lhb/2016040

•	The three calibration methods present an almost identical
Strickler coefficient for the last friction zone.

The last comment permits understanding why, despite
the different sets of friction coefficients, the water surface
profiles calculated are quite close for the three calibration
methods. It is very clear in the light of these results that
the downstream friction zone is that which has the great‑
est impact on the calibration of this case study. This can be
explained, on the one hand, by the size of this friction zone,
which comprises about 3 km of the 5 km of the section stud‑
ied; and on the other hand, by the resolution method used
in the steady subcritical flow kernel of MASCARET which
is performed from downstream to upstream for the calcula‑
tion of the water surface profile along the length of the
section studied. Furthermore, the results shown in Figure 2
emphasise the complexity of determining a set of optimal
friction coefficients. Indeed, the uniqueness of a solution of
this type of problem is not mathematically proven and dif‑
ferent sets of parameters can give analogous results. Thus it
is important to set bounds on the search for optimal friction
coefficients to avoid all the outliers and non‑physical values.
This is why the automatic calibration method developed here
uses a constrained optimisation approach.

Regarding the speed of convergence of the two automatic
calibration methods (BFGS and gradient descent optimisa‑
tion), Figure 3 highlights a faster convergence and accuracy
for the automatic calibration method developed in this work
in comparison to the old method. The BFGS method based on
AD finds an optimal solution in less than 10 iterations whereas
the old method reaches an equivalent result in 40 iterations.
The manual calibration requires approximately 20 simulation
runs to find a cost function between 10‑1 and 10‑2.

For the total computation time, there is no noticeable dif‑
ference to reach the same accuracy on the cost function for
both methods.

To conclude this first case of implementation, the auto‑
matic calibration method based on the constrained optimisa‑
tion approach of the Quasi‑Newton method BFGS presented
better accuracy (after 40 iterations, the cost functions are con‑
stant with a value 4.3 10 3× − m2 for the BFGS approach versus
6.4 10 3× − m2 for the gradient descent optimisation method)
with faster convergence in comparison to the old method used.

To compare these initial findings, a second application case
study was tested. It takes a 50 km section of the Garonne
River and includes both the main channel and the flood plain.

V.2. calibration of a reach of the Garonne

V.2.1. Context and available data

The zone selected to perform this study was a section
of the Garonne River between Tonneins, downstream of
the confluence with the Lot River, and La Réole (limit
of the hydrodynamic influence of the tide), i.e. about 50 km
of river [Besnard and Goutal, 2011].

Upstream and downstream of the model, the boundary
conditions used were imposed flow rate and water surface
profile, respectively. The section studied was divided into
3 friction zones of variable size (cf. Figure 4).

To calibrate this case, two sets of flood data each com‑
posed of 3 measures were available. The first set of data
concerned a non‑overtopping flood with a flow rate of
255 m3/s and a downstream height of 4 m whereas the sec‑
ond set resulted from an overtopping flood with a flow rate
of 2550 m3/s and a downstream height of 11.73 m. The
geometry of the model is not described in this paper.

Furthermore, since this case had already been the subject
of a study, the calibration data obtained manually were also
available. The Strickler coefficient values per friction zone
calibrated manually were, for main channel and the flood
plain, (40/32/33) m1/3/s and (10/12/12) m1/3/s, respectively.
The water surface profile linked to these friction coefficient
values is shown in the figure below:

Figure 4: Water surface profile calculated with friction coef‑
ficients calibrated manually.

Figure 2: Friction coefficient values by zone obtained with
the three different calibration methods.

Figure 3: Value of the cost function according to number of
iterations for the Quasi‑Newton BFGS method and the gra‑
dient descent optimisation method.

64

DOI 10.1051/lhb/2016040 La Houille Blanche, n° 4, 2016, p. 57-65

V.2.2. Comparison of results obtained during automatic
calibration

For the two automatic calibration methods, the Strickler
coefficients of the main channel and flood plain were initial‑
ised at the values of 30 m1/3/s and 15 m1/3/s respectively, in
each zone. In this case, the automatic calibration determined
the friction coefficients of the main channel and flood plain
simultaneously with the two floods available.

The results obtained with the two automatic calibration
methods are presented in the following figure.

The first two observations mentioned in the presentation
of the results of the previous test case remain valid for this
new application.

However, in comparison to the previous case, the results
shown in Figure 5 highlight the need to set bounds when
searching for the friction coefficient. Indeed, the friction coef‑
ficient value for a natural flood plain must be between 5 and
20 m1/3/s. In this case of application, contrary to the auto‑
matic calibration method based on the constrained BFGS
Quasi‑Newton method, this criterion is not complied with in the
calibration based on the gradient descent optimisation method,
for which the friction coefficient of the flood plain which
extends from 13150 m to 21925 m was found equal to 31 m1/3/s.

Regarding the speed of convergence of the two automatic
calibration methods (BFGS and gradient descent optimisa‑
tion), Figure 6 also highlights higher accuracy and speed of

convergence for the number of iterations, for the automatic
calibration based on the Quasi‑Newton BFGS optimisation
method than for the old method. After only 9 iterations, the
cost function was 7 10 6× − m2 for the BFGS method versus
0.14 m2 for the gradient descent optimisation method. This
last value is too high to consider the found Strickler coef‑
ficients as acceptable.

The case of the Garonne emphasised the efficiency of the
constrained BFGS Quasi‑Newton method when calibrating
friction coefficients in the framework of a river, on the one
hand by bounding the minimisation and on the other hand
providing better accuracy and convergence speed.

V.3. Synthesis: contribution of AD to the automatic
calibration

The real test cases of Bugey and Garonne show the supe‑
riority of the second order BFGS method over the first order
gradient method as expected. Even if the cost function of
the BFGS method is always smaller than for the gradient
method, it is not easy to set a value of convergence criteria
for the cost function from a practical point of view. This
mainly depends on the number of floods/measurements and
on the required accuracy for the computed water levels.
Consequently, practical applications can have a wide range
of values for the convergence criteria.

Finally, in order to see more clearly the gain of using AD,
the BFGS method is tested on a new set of data with FD.
The following table compares the cost function values for
15 iterations of the BFGS algorithm.

VI. concLuSIonS AnD outLooK

Evaluating derivatives for a given function (mathemati‑
cal function and calculation code) can be a challenge.
Algorithmic Differentiation proves a powerful technique for
evaluating the derivatives of functions described by com‑
puter programs [Griewank and Walther, 2008].

This article presented the application of the AD tool
TAPENADE [Hascoët and Pascual, 2013] to one of the
hydraulic codes of MASCARET [Goutal et al., 2012], and
validated its use for an inverse parametric optimisation
problem. For 1D hydraulic programs like MASCARET, the
nature of a river bed is modelled by a friction coefficient.
This coefficient accounts for the friction of walls on fluid
as well as other phenomena not modelled elsewhere such
as turbulence and channel bends. The objective of this work
was to apply AD to the inverse problem of optimal friction
coefficient calibration.

Automatic calibration is an inverse method used to obtain
a constant “admissible” friction coefficient per zone, result‑
ing in the calculation of a water surface profile close to
that measured for a steady flow. The optimal search for this
coefficient takes the form of minimising a cost function

Figure 5: Friction coefficient values of the main channel
and flood plain obtained with different automatic calibration
approaches.

Table 2: Influence of the derivative method on the BFGS
algorithm

BuGEY GAronnE
FD AD FD AD

6.09´10‑3 4.21´10‑4 6.39´10‑1 3.98´10‑10

Figure 6: Cost function values according to the number of
iterations obtained with the different automatic calibration
approaches.

65

La Houille Blanche, n° 4, 2016, p. 57-65 DOI 10.1051/lhb/2016040

calculating the difference between the height calculated
by the numerical model and the measured height. This led
to choosing the constrained BFGS Quasi‑Newton method to
minimise the cost function. Using a constrained optimisation
method allowed setting bounds when searching the param‑
eter to be calibrated. The optimisation method employed
involved calculating the gradient of the cost function, which
was obtained through AD of the calculation code.

The results obtained with the method developed were
compared with those obtained with an old calibration
method based on the gradient descent optimisation method
with a gradient approximated by FD. The comparison was
performed on two real case studies.

These two cases of application highlighted the efficiency
of the constrained BFGS Quasi‑Newton method during the
calibration of friction coefficients in comparison to gradient
descent optimisation due to the setting of bounds for mini‑
misation. Indeed, searching an optimal friction coefficient
calibration is a complex, sometimes ill‑posed problem for
which different sets of parameters can provide analogous
results. This question has not been investigated here, but
to avoid any outliers or nonphysical values, it is important
to set bounds on the search for optimal friction coefficients.
Furthermore, in the light of the different results presented,
the speed of convergence of the new calibration method is
faster in terms of iterations and better accuracy is obtained.
The automatic calibration method developed during this
work will therefore be deployed in the upcoming version of
the MASCARET software (version 8.1).

For several decades, EDF R&D has developed numeri‑
cal codes to respond to the problems encountered by the
company. Innovative techniques such as AD may fit into the
constant improvement of these tools.

AD covers a wide array of applications. This work was
conducted in the framework of inverse problems. However,
other applications will also be explored:
•	Quantification of uncertainty. Certain methods allow
exploring the range of variation of calculation code inputs
using partial derivatives to deduce global sensitivity indices.
•	Variational data assimilation methods (“4DVAR” algo‑
rithm). As with automatic calibration, this type of algorithm
requires the use of an optimisation method which in turn
requires calculating the gradient of a cost function.

VII. rEFErEncES

Besnard a., Goutal n. (2011) — Comparison between 1D and
2D models for hydraulic modeling of a floodplain: case of
Garonne river. La Houille Blanche. 3 42‑47

Bischof c. h., roh l., Mauer‑oats a. J. (1997) — ADIC: an
extensible automatic differentiation tool for ANSI‑C. Software:
Practice and Experience. 27(12) 1427‑1456

Bischof c. h., carle a., corliss G. f., Griewank a., hovland P. d.
(1991) — ADIFOR – Generating Derivative Codes from
Fortran Programs. Scientific Programming. 1 11‑29

chanson h. (2004) — Environmental hydraulics of open channel
flows. Elsevier Butterworth‑Heinemann.

cunGe J. a., holly f. M., verwey a. (1980) — Practical aspects
of computational river hydraulics. Pitman Advanced Publishing
Program.

fanG f., Pain c. c., navon i. M., GorMan G. J., PiGGott M.
d., allison P. a. (2011) — The independent set perturbation

adjoint method: A new method of differentiating mesh‑based
fluids models. International Journal for Numerical Methods in
Fluids. 66(8) 976‑999

fanG f., Pain c. c., navon i. M., cacuci d. G., chen X. (2013)
— The independent set perturbation method for efficient com‑
putation of sensitivities with applications to data assimila‑
tion and a finite element shallow water model. Computers &
Fluids. 76 33‑49

fread d. l., sMith G. f. (1978) — Calibration technique for
1‑D unsteady flow models. Journal of Hydraulics Division.
Proceedings of the ASCE. 104(HY7) 1027‑1044

GierinG r., kaMinski t., slawiG t. (2005) — Generating efficient
derivative code with TAF: Adjoint and Tangent linear Euler
flow around an airfoil. Future Generation Computer Systems.
21(8) 1345‑1355

GilBert J.‑c., leMarechal c. (1989) — Some numerical expe‑
riments with variable‑storage quasi‑Newton algorithms.
Mathematical Programming. 45(1‑3) 407‑435

Goutal n., lacoMBe J.‑M., Zaoui f., el kadi aBderreZZak k.
(2012) — MASCARET : a 1‑D open‑source software for flow
hydrodynamic and water quality in open channel networks.
River Flow, Murillo (Ed.), Taylor & Francis Group, London.
1169‑1174

Griewank a., walther a. (2008) — Evaluating derivatives:
Principles and Techniques of Algorithmic Differentiation.
Society for Industrial and Applied Mathematics.

hascoët l., Pascual v. (2013) — The Tapenade Automatic
Differentiation tool: Principles, Model and Specification. ACM
Transactions on Mathematical Software. 39(3) 20:1‑20:43

honnorat M., Marin J., Monnier J., lai X. (2007) — Dassflow
v1.0: a variational data assimilation software for 2D river
flows. Research Report RR‑6150, INRIA.

lotZ J., lePPkes k., nauMann u. (2011) — /c++ ‑ Derivative Code
by Overloading in C++. Aachener Informatik‑Berichte (AIB).

nauMann u. (2012) — The Art of differentiating Computer
Programs. An Introduction to Algorithmic Differentiation.
SIAM‑Society for Industrial and Applied Mathematics.

navon i. M. (1998) — Practical and theoretical aspects of adjoint
parameter estimation and identifiability in meteorology and
oceanography. Dynamics of Atmospheres and Oceans. 27(1‑4)
55‑79

nocedal J., wriGht s. J. (2006) — Numerical Optimization.
Springer Series in Operations Research and Financial
Engineering. Springer.

utke J., nauMann u., faGan M., tallent n., strout M.,
heiMBach P., hill c., wunsch c. (2008) — OpenAD/F: A
modular, open‑source tool for Automatic Differentiation of
Fortran codes. ACM Transactions on Mathematical Software.
34(4) 18:1‑18 :36

vidal J.‑P. (2005) — Assistance au calage de modèles numériques
en hydraulique fluvial. Apports de l’intelligence artificielle.
Thèse, Institut National Polytechnique de Toulouse. https://tel.
archives‑ouvertes.fr/tel‑00010185

walther a., Griewank a. (2012) — Getting started with ADOL‑C.
Combinatorial Scientific Computing. U. Naumann and
O. Schenk (Ed.). 181‑202

Zhu c., Bird r. h., lu P., nocedal J. (1997) — Algorithm
778: L‑BFGS‑B: Fortran subroutines for large‑scale bound
constrained optimization. ACM Transactions on Mathematical
Software. 23(4) 550‑560

Zhu y., navon i. M. (1999) — Impact of parameter estimation
on the performance of the FSU global spectral model using
its full‑physics adjoint. Monthly Weather Review. 127(10)
1497‑1517

	_Ref399775848
	_Ref399923563
	_Ref399942724
	_Ref399923544
	_Ref399776249
	_Ref399776188

